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ABSTRACT 

This thesis demonstrates the feasibility of using computer-aided wargames (CAW) 

as a tool to help determine high-level system requirements for future reconnaissance-

capable unmanned aerial vehicles (UAVs). This research uses a model-based systems 

engineering (MBSE) approach to establish high-level capability requirements and 

concepts of operations for the future fleet. Unmanned aerial vehicle design factors in this 

study include mission altitude, sortie size, and time between launches. Measures of 

effectiveness (MOEs) delineate which of these factors, or factor combinations, best 

enhances enemy high-value unit (HVU) detection while minimizing UAV losses in 

theater. The thesis utilizes Joint Theater Level Simulator-Global Operations (JTLS-GO) as 

the modeling environment and applies regression tools and visualization techniques to 

communicate model outcomes. While all three design factors affect the MOEs, results 

from the model suggest that UAV altitude has the most prominent impact on the MOEs. 

High altitudes decrease HVU detections but also lower UAV attrition, illustrating 

potential trade-offs that can be applied to an operational context. The interaction of the 

number of UAVs with this altitude points to a concept of operations.  Swarms of low-

altitude UAVs tend to have greater success with detecting HVUs while keeping a 

relatively low percentage of losses. 
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EXECUTIVE SUMMARY 

Owens (2012) states that the art of force planning entails both strategic and 

structural considerations: the former deals with “war plans…employment and deployment” 

of military assets, while the latter pertains to the “currency of domestic politics,” such as 

budgetary constraints or mission areas (1). As a result, decision makers entrusted with 

building tomorrow’s fleet must maintain a keen understanding of domestic national 

strategy and military deficiencies, while also considering potential adversaries’ strategy 

and capabilities. Fiscal constraints in the form of budgets further complicate this calculus, 

as a mismatch in strategic assumptions or force composition can be costly both financially 

and politically.  

In order to manage risks inherent in force planning, the United States leverages 

technology as a “hedging tool,” whereby current capabilities are reconciled with 

contemporary missions while anticipating how evolving technologies can rectify any 

existing shortfalls between the two (Owens 2012, 2). While this was a largely successful 

strategy in the years following the Soviet Union’s collapse, the rise of military peer and 

near-peer adversaries, predominantly in China and Russia, make this option less tenable. 

Due to the rapid evolution of global military capabilities and the increasing lethality of 

potential adversaries’ weapon systems, force planners need a tool that provides insight in 

how adopting emergent technologies can potentially supplement both strategic and 

structural considerations. This thesis studies the feasibility of using a computer-aided 

wargame (CAW) in conjunction with a model-based systems engineering (MBSE) 

approach to examine high-level system requirements and potential concepts of operation 

(CONOPs) for future reconnaissance-capable unmanned aerial vehicles (UAVs).  

This research was conducted at the request of Navy Warfare Systems Directorate 

(N9) to determine the capability requirements and impacts of desired unmanned aerial 

vehicle (UAV) technologies in a future fleet construct. The thesis utilizes Joint Theater 

Level Simulator-Global Operations, or JTLS-GO, as the modeling environment, with the 

computer-aided exercise Cobra Gold 2018 (CG18) serving as the specific scenario. Testing 

variations of several UAV-specific design factors, such as sortie size, flight altitude, or 
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launch times, helps determine which factors or combinations of factors increase enemy 

high-value unit (HVU) detections and decrease UAV attrition to enemy anti-air weapons 

within the scenario.  

A design of experiments, or DOE, provides a structured framework to identify 

which design factors have the greatest impact on the MOEs. This thesis uses a central-

composite design (CCD) for experimentation. Each design factor encompasses three levels, 

resulting in 27 unique design points for data analysis; replicating each design point for 30 

iterations reduces data variability. Regression tools and visualization techniques available 

in JMP statistical analysis software transforms raw data measuring HVU detection and 

UAV attrition into concise infographics that communicate model outcomes.  

Figures 1 and 2 illustrate partition trees resultant from the experiment. As data-

mining tools, partition trees help show which combinations of factors result in the best and 

worst outcomes within the model. The first partition tree shows that the highest UAV 

survivability is achieved by flying a large sortie at high altitudes. Conversely, employing a 

small sortie size at low altitude without staggering launch times results in the highest 

percent attrition. Generally, these results align with intuition. Flying at higher altitudes can 

exploit range limitations inherent in anti-aircraft weapons and take advantage of range-

dependent signal losses inherent in radar systems. Moreover, employing a large number of 

UAVs can overwhelm the capabilities of an anti-air weapon system, resulting in a greater 

percentage of aircraft leaking by the weapon.   
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Figure 1.  Partition Tree Illustrating Design Factor Impact on UAV Attrition 

Figure 2 shows the how the UAV design factors impact HVU detections within 

the game. Flying at higher altitudes adversely affects HVU detections, while employing a 

large sortie size at low altitude results increases the number of enemy units discovered. 

These results are also logical in a real-world context. Flying at higher altitudes results in 

drastically lower HVU detections, suggesting the sensor is resolution-limited in the 

model. However, if flying at lower altitudes coinciding with the sensor’s capabilities, 

employing more UAVs results in the greatest number of enemy HVUs detected since 

sensor coverage is maximized.  
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Figure 2.  Partition Tree Illustrating Design Factor Impact on HVU Detection 

 
 Overall, the results from the model correlate to what would be expected 

operationally, validating the feasibility of using a CAW as a force planning tool. Moreover, 

the model communicates trends that can help decision makers determine which functional 

capabilities have the greatest impact in mission accomplishment, while consequently 

illustrating potential trade spaces. For example, if minimizing attrition were a critical 

performance metric, a high-altitude reconnaissance UAV may be an appropriate solution; 

consequently, additional research in enhancing sensor resolution would maximize its 

usefulness and prove beneficial.  
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I. INTRODUCTION 

A. PURPOSE 

This research is being conducted at the request of Navy Warfare Systems 

Directorate (N9) to determine the capability requirements and impacts of desired 

unmanned aerial vehicle (UAV) technologies in a future fleet construct. Results in gathered 

intelligence or aircraft casualties give insight to decision makers in determining the 

feasibility of future technologies and the benefits that they could offer to the fleet; 

moreover, this study explores how Navy leaders might implement these prospective 

technologies in future fleet architectures.    

B. BACKGROUND 

The collapse of the Soviet Union in 1991 gave the United States and its allies 

uncontested military advantages in multiple domains, be it ground, air or naval forces. 

However, over much of the past decade, this monopoly slowly disappeared. Although this 

erosion of U.S. dominance occurred across all domains, it was particularly exacerbated in 

the Navy due to the operational demand placed on the service (Harris 2018). Consequently, 

a more critical analysis of the future military in terms of quantity, capability and budget is 

necessary as domestic budget constraints converge with the reemergence of peer and near-

peer competitors.  

In his February 2018 statement before the House Armed Services Committee, 

former United States Pacific Command (U.S. PACOM) Commander Admiral Harry Harris 

(2018) warned of “peer competitors like China and Russia…closing the technological gap” 

and called for Navy “systems of increased lethality that go faster and further, are 

networked, are more survivable and affordable” as well as “critical capabilities to include 

UAVs for increased intelligence, surveillance and reconnaissance” (33). Admiral Harris’ 

proposal echoes the future fleet capabilities that Chief of Naval Operations (CNO) Admiral 

John Richardson envisions. In his 2017 white paper, “The Future Navy,” Admiral 

Richardson (2017) states there is “no question that unmanned systems must also be an 

integral part of the future fleet” (6). Both Admiral Richardson and Admiral Harris conclude 
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that unmanned assets combine cost effectiveness, lethality and endurance, critical traits in 

the battlefield that would allow the United States to maintain superiority over a peer threat. 

However, there is uncertainty in the impact of integrating new unmanned system 

capabilities in the current force’s operations, as well as the value such systems bring.  

Unmanned capabilities can potentially have a significant impact on data collection 

and battlespace awareness in contested or hostile environments. With the increasing 

lethality of surface-to-air and air-to-air threats, mission accomplishment in such hostile 

environments can result in unacceptably high risk and attrition to both man and machine. 

An unmanned asset can mitigate this risk (Berner 2004). As indicated in the Alternative 

Future Fleet Platform Architecture Study circa October 2016, the Navy’s future 

architecture includes a “[d]istributed [f]leet [l]ethality concept” accomplished in part by 

“unmanned vehicles…relying on [intelligence, surveillance, reconnaissance and tracking] 

ISR&T capability and capacity to execute the required kill chains” against a threat (8). 

Such a construct would address both the current CNO’s vision and former PACOM’s desire 

for an unmanned, lethal fleet component.  

As the Navy’s focus pivots to unmanned assets, key decision makers need the 

ability to extract and test future capability requirements and concepts of operations 

(CONOPs) for proposed and scheduled UAV assets. These considerations, however, must 

account for the emerging capability advances and CONOPs of the United States’ 

adversaries, further stressing the domestic timeline from proposal to fleet integration. 

Adding a finite research and development (R&D) budget for future technologies further 

confounds the problem of strategic force planning. Given these considerations, the ability 

to vet, test, and evaluate potential impacts of future technologies is beneficial for 

stakeholders. 

C. SCOPE AND METHODOLOGY 

The scope of this thesis, part of the broader Navy Warfare Systems Directorate (N9) 

research, focuses on modeling futuristic unmanned aerial systems (UAS) capabilities in 

order to satisfy theater level requirements. Specifically, the models contained in this thesis 

represent various instantiations similar to the Navy’s evolving broad area maritime 
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surveillance (BAMS) UAV program. According to the Department of Defense (DoD) 

publication Unmanned Systems Roadmap 2007–2032 (2007), BAMS is “a Navy fleet asset 

for operational and tactical users…[which provides] a variety of intelligence activities and 

nodes. In a secondary role, it will also be used alone or in conjunction with other assets to 

respond to theater level, operational, or national strategic tasking” (75). Unlike manned 

reconnaissance aircraft currently in use, unmanned BAMS assets provide the Navy a means 

of long-endurance, continuous surveillance of a threat area or area of interest with the 

added benefit of diminishing human loss of life. In turn, this asset offers commanders more 

continuity in understanding a given operating area.  

This thesis applies a model-based systems engineering (MBSE) approach in 

conjunction with computer experimentation and customized designs of experiments 

(DOE). The general simulation environment is contained within the Joint Theater Level 

Simulation-Global Operation (JTLS-GO) program. Specifically, this thesis is tailored 

around Cobra Gold 2018 (CG18); therefore, while the results and conclusions of this work 

are relevant to CG18 and observations therein, the findings extend to similar theater-level 

exercises. Cobra Gold is an annual exercise held in Thailand under the direction of the 

PACOM Warfighting Center (PWC) and entails two components: a field training exercise 

(FTX) and a computer-based command post exercise (CPX). The CPX is the basis for the 

computer-aided exercise (CAE) and provides a common model and test environment to 

enhance stakeholder understanding. Experimentation and simulation analysis are major 

elements of the methodology to complete the study. Accomplishing this research requires 

a multi-step process. Step one is to extract data from the unaltered CG18 CPX to identify 

performance gaps that decision makers can potentially fill with UAVs. After identifying 

these shortcomings, the next step is to brainstorm the integration of future UAS 

technologies into the scenario. Subsequently, user defined outcomes establish UAS 

operational requirements in the simulation. Defining these operational requirements 

encompasses: 

• mission definition 

• performance parameters 
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• operational deployment 

• utilization requirements 

• effectiveness factors 

Defining operational requirements allows modeling of UAV assets and subsequent 

injection into the CAE. User-established measures of effectiveness (MOEs) and measures 

of performance (MOPs) can determine if any significant differences exist between the 

original CPX and the modified CAE. These MOPs and MOEs encompass units lost (both 

existing manned and injected unmanned units), total detection events, detection time, and 

the number of decisions made. Using a design of experiments based on these measures 

determines quantitatively how UAV implementation in a future fleet construct affects the 

CAE outcome. Various instantiations explore how changes in launch time, mission 

altitude, and quantity of UAVs employed affect the scenario. Lastly, analysis of new 

capability gaps determines the operational tradeoffs associated with implementation of 

future capabilities. Chapter III articulates the methodology this thesis uses in greater detail. 

D. PROBLEM STATEMENT 

Current Navy intelligence, surveillance and reconnaissance (ISR) aircraft provide 

inadequate on-station time, resulting in an inability to maintain continuous surveillance 

along contested coastlines and littorals. Additionally, current assets are overly vulnerable 

to enemy weapon systems, putting crew and equipment at risk.  

E. RESEARCH QUESTIONS 

1. What insights can an automated computer-aided wargame provide to force 

planners to help shape future fleet capabilities? 

2. What is the effect of adding future unmanned aerial assets on a combined 

task force’s ability to maintain maritime domain awareness along 

contested coastlines and littorals? 
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3. What capabilities do future unmanned aerial systems require to be value-

added to existing reconnaissance methods in a joint maritime force? 

F. THESIS ORGANIZATION 

In order to answer these questions, this thesis began by providing general 

background and significance of this research. Next, Chapter II reviews pertinent literature 

detailing current and proposed fleet reconnaissance capabilities, as well as previous efforts 

using UAVs in simulated and real-world environments. Chapter III describes the modeling 

scenarios’ theoretical framework and methodology, the design factors for the injected UAV 

assets within the CAE, and segues to the experimental setup for this thesis. Chapter IV of 

this thesis focuses on data analysis and subsequent results from the experiment. Chapter V 

concludes this thesis with summary, recommendations, and potential areas for future 

studies.  
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II. LITERATURE REVIEW 

This chapter gives an overview of past and current manned Navy ISR assets that 

unmanned aerial systems augment or replace. A discussion of future fleet UAS capabilities 

illustrates how unmanned assets can satisfy mission requirements in the ISR domain. 

Lastly, it provides background information from other work using computer simulations to 

analyze UAV capabilities.    

A. PAST AND CURRENT MANNED RECONNAISSANCE ASSETS  

The two most recent Navy aircraft used for manned reconnaissance are Lockheed’s 

P-3 Orion and Boeing’s P-8 Poseidon. The latest iteration of the Orion, the P-3C, was 

introduced to the fleet in 1969, with production lasting until 1990 (Federation of American 

Scientists 1999). During the aircraft’s half-century service life, the U.S. used P-3s for 

wartime patrols in Vietnam, Iraq, and Afghanistan. With the exception of a 16-plane EP-3 

squadron in Whidbey Island, Boeing’s P-8 Poseidon largely phased out the P-3 platform. 

Comparing the P-3 against the P-8, shown in Figure 1 and Figure 2 respectively, clearly 

illustrates the design evolution.  

 

Figure 1. Boeing P-3C Orion. Source: Naval Air Systems Command (2018). 
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Figure 2. Lockheed P-8 Poseidon. Source: Federation of American Scientists 
(1999). 

While the P-3 is a turbo-prop aircraft by design, the P-8 utilizes a pair of turbofan 

engines; combined with the greater volume of the 737-based fuselage, the Poseidon results 

in an aircraft that delivers “extended global reach, greater payload capacity, [and] higher 

operating altitude” compared to its predecessor (Naval Air Systems Command 2018, 3). 

Quantitatively, this translates to a range of 1,200 nautical miles and four hours of on-station 

time compared to the Orion’s range of 2,380 nautical miles and three hours of on-station 

time (Naval Air Systems Command 2018).  

Although the newer P-8 enhances mission accomplishment, both patrol aircraft 

share several limitations common to traditional manned aircraft. First and foremost are the 

personnel requirements to support a mission: the P-3 typically flies with a crew of 11, while 

the P-8 reduces that number to nine (Naval Air Systems Command 2018). Considerations 

relative to the manning requirement, such as requisite personnel and crew rest, in 

conjunction with aircraft maintenance requirements, constrains mission capacity and limits 

availability. Additionally, both airframes are engineered to accommodate and sustain the 

human operators within, increasing size and weight requirements, both of which impact 

on-station time. Lastly, using a human crew leaves personnel susceptible to enemy anti-air 

defenses. As history shows, the potential loss or endangerment of human life, particularly 
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in reconnaissance missions, can have significant impacts on tactical, strategic and political 

levels.  

The two most pertinent examples of this are the Hainan Island incident, circa 2001, 

and the U-2 incident, circa 1960. In the case of the former, a Chinese J-8 clipped and 

damaged an EP-3 Aeries II, destroying the fighter and forcing an emergency landing for 

the reconnaissance aircraft. As a result, the Chinese government gained possession of the 

damaged U.S. aircraft and much of the sensitive materials within, including cryptographic 

keys, manuals on exploiting signal intelligence and personal data on dozens of National 

Security Agency (NSA) employees (Zetter 2017). While the political ramifications of this 

particular incident were fairly minimal, that is not always the case when a manned 

reconnaissance asset is lost on mission. In 1960, a U-2 spy plane flown by Central 

Intelligence Agency (CIA) pilot Gary Powers was shot down while on patrol in the former 

Soviet Union, resulting in a two-year imprisonment for the pilot. Politically, the U-2 

incident increased international tensions between the United States and Soviet Union and 

embarrassed the United States internationally (Wright 1960). These two case studies 

illustrate the significant political and military ramifications resulting from the loss of 

manned reconnaissance aircraft. Not only do policy makers contend with loss of national 

assets and the ramifications therein, consideration must be made for the return of the pilot 

and crew. As such, minimizing risk to the human element in intelligence-gathering 

missions warrants exploration.    

B. PAST AND CURRENT UNMANNED RECONNAISSANCE ASSETS  

Just over a decade passed after the Wright brothers’ achievement in powered flight 

before Englishman Archibald Montgomery Low developed the first unmanned, remote-

controlled aircraft system in 1916 (Kamienski and Piehler 2013). The idea of removing the 

pilot from the cockpit continued to evolve over several decades, initially as prototypical 

guided weapons in lieu of unmanned aircraft. As U.S. involvement in Indochina continued 

during the 1960s, the CONOPs for unmanned aircraft would see an inflection point; by the 

end of the Vietnam War, the military leveraged drones in “up to 40 reconnaissance flights 

per month” with 3,435 missions flown in totality (Kamienski and Piehler 2013, 2).  



10 

The next significant uptick for UAV usage in theater occurred in the Persian Gulf 

War, circa 1990–91, during which coalition forces used RQ-2 Pioneers, shown in Figure 

3, to fly “almost 1,700 hours in… 500 reconnaissance sorties” (Kamienski and Piehler 

2013, 2). The implementation of unmanned aircraft during the first Gulf War, and in 

smaller geopolitical conflicts in Somalia, Bosnia and Kosovo during the late 20th century, 

captured U.S. interest in unmanned systems. According to Kamienski and Piehler (2013), 

the success of UAVs spurred U.S. investment for research and development of unmanned 

systems and prompted additional drone deployments post-9/11. During Operation Iraqi 

Freedom (OIF), the United States military again deployed the RQ-2 Pioneer extensively, 

collating another 2,700 flight hours for the aircraft in theater (Koch 2004). For the Navy, 

RQ-2 Pioneers were employed from Iowa-class battleships to provide real-time targeting 

for the ships’ organic 16-inch guns. Anecdotally, in this role the Pioneer achieved what is 

considered the first historic example of human troops surrendering to a machine. Launched 

from the USS Wisconsin (BB 64) and flying at low altitude, Iraqi forces, correlating that 

the “obnoxious sound of the [Pioneer’s] two-cycle engine” quickly resulted in several tons 

of naval gunfire raining down at their precise position, took to “handkerchiefs and 

bedsheets” to signal surrender (United States Navy Fact File 2013, 3).  

Figure 3. RQ-2 Pioneer. Source: United States Navy Fact File (2013). 

After more than two decades of service, the Navy retired the RQ-2 in favor of the 

vertical takeoff and landing tactical UAV (VTUAV) MQ-8 Fire Scout, shown in Figure 4. 
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Initially fielded in 2009, the Fire Scout has successfully deployed from amphibious 

transports, frigates, littoral combat ships (LCS), as well as flew missions in Afghanistan 

(Heiss 2012). Unlike previous UAVs employed by the Navy, the Fire Scout is designed to 

operate autonomously during both launch and recovery (Northrup Grumman 2017). 

 

Figure 4. MQ-8 Fire Scout VTUAV. Source: Northrup Grumman (2017). 

Though still a relatively new platform, the Fire Scout provides the Navy greater 

flexibility in missions previously attributed to manned helicopters such as the MH-60. 

According to his 2012 Naval Postgraduate School (NPS) thesis, Commander Kevin Heiss 

asserts that the MQ-8 offers up to eight hours of endurance and greater stealth compared 

to the MH-60R (Heiss 2012). Moreover, the smaller size and simplicity resulting from the 

elimination of “crew support, hydraulics, instruments, [and] fire suppression” systems 

intrinsic in manned aircraft results in a platform that uses “3.7 times less fuel and 14.5 

times less maintenance man-hours,” while also offering up to 80% cost savings per 

airframe compared to the MH-60 (Heiss 2012, 13).  

C. FUTURE FLEET UNMANNED AERIAL ASSETS  

While the MQ-8 provides more flexibility and lower expected acquisition costs, it 

is primarily designed to support similar missions conducted by manned helicopters. As a 

consequently, the Navy has a current capability gap in performing persistent, high-altitude 



12 

reconnaissance via unmanned aerial assets. According to the Unmanned Systems Roadmap 

2007–2032 (2007), this mission area garners significant interest across all military 

branches. Table 1 shows combatant commander (COCOM) preferences for UAVs 

gravitate heavily toward reconnaissance and precision targeting capabilities regardless of 

airframe size.  

Table 1. COCOM UAS Needs Prioritized by Class. 
Source: Department of Defense (2007). 

 
 

Much like the COCOMs, the Navy exhibits significant interest in using UAVs for 

reconnaissance. As a result, they are adapting a variant of Northrop Grumman’s RQ-4 

Global Hawk for use in broad-area maritime surveillance, or BAMS. While the United 

States Air Force currently fields the Global Hawk, the Navy variant exhibits modifications 

to enhance operability in a maritime environment, including changes to airframe strength 

(for wind gusts, bird strikes and the like) as well as to the de-icing system necessary to 

support high-altitude missions. Expected in the fleet around 2021, the MQ-4C Triton will 

satisfy the Navy’s desire to maintain a “persistent, around-the-clock surveillance” asset 

operating at a far higher altitude than either the Fire Scout or Poseidon (Pomerlau 2018, 2), 
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and is considered a “key element in the Navy’s recapitalization of airborne…ISR 

capabilities” per the Naval Aviation Enterprise (2016, 28). 

In addition to the Triton’s primary mission of providing 24/7 coverage of an area, 

this high-altitude asset provides several distinct secondary advantages. First, the disclosed 

operating altitude between 55,000 and 60,000 feet places the aircraft above the typical 

flight altitudes of commercial jet routes, as shown in Figure 5, alleviating airspace 

management conflicts.  

 

Figure 5.  Operating Altitudes for Select Navy Aircraft. Adapted from: 
Department of Defense (2007). 

Second, much like the U-2 spy plane, the high altitude of the Triton leaves the 

aircraft less susceptible to many conventional, ground-based weapons (Berner 2004). 

Finally, supplementing existing Navy reconnaissance platforms with the MQ-4 provides a 

means to satisfy multiple warfare areas simultaneously. According to Persistent Maritime 

Unmanned Aircraft Systems Program Office (PMA-262) program manager Captain Dan 
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Mackin, a sortie of four Tritons provides 24/7 coverage of a given target, allowing P-8s in 

theater to conduct their “primary mission [of] anti-submarine” warfare (Pomerlau 2018, 

11).  

While neither the MQ-4 nor MQ-8 are direct replacements for the P-8, the 

intermediate goal is to design a complementary system of systems leveraging both 

unmanned and manned aircraft. According to Naval Aviation Vision 2016–2025 (2016), 

the “Navy’s unmanned family of systems recapitalize[s] the airborne capabilities provided 

by the [EP-3E]” and “compliment[s] the P-8…on maritime patrol” (70). Figure 6 illustrates 

this concept.  

 

 

Figure 6. Navy Patrol Aircraft Roadmap. Source: Naval Aviation Enterprise 
(2016). 

Although the notion of pairing manned and unmanned assets is hardly new, the 

figure qualitatively illustrates the evolving CONOPs for unmanned systems. Moreover, 
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replacing an existing manned platform with multiple unmanned systems has ramifications 

in funding that potentially illustrate the future fleet’s planned composition. According to 

Stephen Trimble (2011), budgeting for unmanned assets meant removing funds for EP-3 

revitalization as well as for the manned EP-3 replacement program, dubbed the EP-X. 

Specifically, Trimble (2011) points out that out of an $8.6 billion budget set aside for ISR 

development, $1.1 billion went toward developing the Fire Scout; $3.9 billion was 

allocated to Northrup’s BAM program; $2.5 billion was earmarked for an “unmanned 

carrier-launched airborne surveillance aircraft;” while the remaining $1.1 billion would be 

used for developing a “medium-range unmanned aircraft system,” leaving “no room for 

extending the service life of the EP-3” beyond 2020 (4). Thus, in Trimble’s estimation, the 

Navy exhibits less interest in continuing development of manned reconnaissance aircraft, 

and is gravitating more towards unmanned systems to fill reconnaissance roles.  

D. PRIOR UAV COMPUTER MODEL THESES  

Several prior NPS theses use computer-based models to explore functionality and 

parametric requirements for UAVs. The most recent study of interest is from Mohamed A. 

Alobaidli’s 2017 NPS thesis, wherein he analyzes the use of UAVs for detection missions 

in support of Decisive Storm operations. Using the Map Aware Non-uniform Automata 

(MANA) agent-based simulation tool, Alobaidli (2017) investigates how vehicle 

performance and payload components of the UAS, including altitude, endurance, detection 

range, sensor slew rate, aperture size, and refueling time, affect enemy detection. Injecting 

permutations of these parameters in a simulated environment, Alobaidli’s (2017) model 

shows that leveraging UAVs for reconnaissance operations has a positive impact on 

quantity of enemy forces identified; however, satisfying the operational requirements 

defined in his model would require “substantial financial investment and surplus flight 

performance and sensor capabilities” (60).    

Captain Mark Raffetto conducted a similar study in 2004. Also using MANA as the 

simulation environment, his work explores how UAVs can contribute to intelligence, 

surveillance, and reconnaissance for Marine Corps expeditionary operations. Specifically, 

he investigates how UAV routing, sortie size, sweep width, employment, and classification 
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ability interrelate for successful classification of enemy forces. With his particular model, 

Raffetto (2004) concludes that sweep width (or sensor field-of-view) has a significant 

impact on the quantity of enemy classifications compared to the other factors. Considering 

field-of-view as an altitude-dependent variable, this finding is of particular interest when 

analyzing the CONOPs for a future reconnaissance aircraft.  

Continuing the areas of study of the two aforementioned theses, this work analyzes 

correlations between altitude and detection events, as well as potential relationships 

between sortie size and UAV survivability. However, unlike previous works, the model 

environment used in this thesis investigates how these characteristics affect mission 

outcomes in a joint, theater-level maritime environment. In turn, this provides insight in 

desirable high-level system requirements and helps shape CONOPs for future unmanned 

systems.  

E. LIMITATIONS OF MANA 

As with any model-based simulation software, it is prudent to understand the 

limitations of MANA. While a powerful tool with a minimal learning curve and set-up 

time, the simplicity and user-friendliness come at the cost of preconceived boundaries 

inherent in the software itself. Geographically, though the modeling environment is not 

constrained with respect to playboard size, the computational demands of an agent-based 

model makes it difficult to scale a scenario up to large force sizes (Fournier, Straver, and 

Vincent 2006). Moreover, grid-square definition directly impacts the time-steps and agent 

speeds used in the model in order to preclude “agents from moving through walls or other 

impassable terrain features”; in turn, this can result in a “very large number” of time steps 

necessary for fast-moving agents (Fournier, Straver, and Vincent 2006, 4).  

Additionally, Fournier, Straver, and Vincent (2006) point out several shortcomings 

in how MANA models sensors. First and foremost, each agent in MANA is only allocated 

a limited set of very simple sensors, each of which applies to every target agent, regardless 

of type. Secondly, detection in MANA does not account for the size of the observed target, 

the posture relative to the sensor, nor the contrast of the target in relation to the surrounding 



17 

environment, instead strictly relying on the relative range of the target to the sensor to 

trigger a detection event.  

Using JTLS-GO as the simulation environment alleviates or eliminates many of 

these restrictions. However, there are inherent trade-offs with using a theater-level 

simulation that warrant consideration. Whereas MANA touts an easy-to-understand user 

interface and small learning curve, JTLS-GO is comparatively complex due to the scope 

of what the software attempts to model. While MANA is typically used to analyze small-

scale, tactical engagements, JTLS-GO focuses primarily on simulating large-scale, theater-

level exercises. As a result, JTLS-GO does not offer the same granularity for individual 

agents as MANA; however, since it is used to replicate theater-level command and control, 

it is possible to script a single wargame scenario to create multiple areas of study. 

Moreover, in lieu of collating sensors and the like as seen in MANA, JTLS-GO allows the 

user to assign units individual sensor packages, each programmed within the JTLS-GO 

database with discrete properties. This database structure also allows users to account for 

object size by explicitly entering detection, hit and kill probabilities for a particular agent. 

However, as with any model, JTLS-GO has its own unique shortcomings. Chapter III 

expounds on the merits and limitations of JTLS-GO as a model environment. 

F. CHAPTER SUMMARY 

This chapter provided the reader a brief history of past and current manned 

reconnaissance aircraft used by the Navy. It then discussed the evolution of unmanned 

aircraft to supplement or fulfill ISR missions. Finally, it provided an overview on how this 

thesis compliments former studies as well as the how unique aspects of this study enhance 

the existing body of knowledge.  
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III. FRAMEWORK AND METHODOLOGY 

This chapter begins with a definition and description of model-based systems 

engineering (MBSE). Next, it describes JTLS-GO in greater detail, explains the suitability 

of the model for this study, and reveals how the structure and inherent design of JTLS-GO 

alleviates some shortcomings of MANA. A description of the model scenario follows, 

transitioning into a discussion on injecting and measuring impacts of future UAV 

capabilities within the scenario. Lastly, this chapter concludes with an overview on how 

experimentation, design of experiments, data collection, and data analysis can provide 

insight to develop requirements for future UAVs.  

A. A MODEL-BASED SYSTEMS ENGINEERING APPROACH 

This study uses a model-based system engineering approach. According to the 

International Council on Systems Engineering (INCOSE), MBSE is “the formalized 

application of modeling to support system requirements, design, analysis, verification and 

validation activities beginning in the conceptual design phase and continuing throughout 

development and later life cycle phases” (Systems Engineering Book of Knowledge 2017, 

glossary). Specifically, this thesis focuses on theater-level concept exploration, 

establishing CONOPs as well as general high-level requirements. The red, dashed outline 

on the left-hand side of the “Vee” diagram in Figure 7 illustrates these activities in the 

systems engineering process. 
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Figure 7. “Vee” Diagram. Adapted from Federal Highway Administration 
(n.d.). 

B. JTLS-GO MODEL ENVIRONMENT  

The modeling environment for this study is the Joint Theater Level Simulation-

Global Operation (JTLS-GO). Rolands and Associates (R&A) developed JTLS-GO in 

1983 and continues to refine the simulation model’s theater-level air, ground, and naval 

operations. Continuous updates ensure users gain contemporary insight about joint and 

coalition operations. JTLS-GO offers a number of inherent advantages for this study. First, 

it is a theater-level simulation specifically designed to evaluate alternative military 

strategies (Rolands and Associates, 2017b, 2-1). In addition, it is doctrine-neutral with 

user-defined database parameters for unit size and combat systems suites (Rolands and 

Associates 2018b). These features are helpful in establishing initial CONOPs and 

requirements for future systems, as it provides the user means to adjust the model as 

development progresses and the system is evaluated. Moreover, database refinement 

allows refinement of the model to satisfy different classification levels and audiences. 

Lastly, the fact that many DoD organizations (Joint Warfighting Center, North  Atlantic 

Treaty Organization [JWC NATO]; the Army War College; U.S. Readiness Command; 

Joint Staff Joint Warfighting Directorate [J7]; and PACOM Warfighting Center [PWC]) 
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have adopted the JTLS-GO as a model of choice lends credibility to the model’s validity 

(Rolands and Associates, 2018c). 

1. Gameplay 

The simulation engine behind JTLS-GO is the combat events program, or CEP, 

which “determines all actions and interactions” between air, land, and naval factions, as 

well as “maintains and reports…the [simulated] warfare environment” (Rolands and 

Associates 2017a, 2-8). Users input game orders via a web-hosted interface program 

(WHIP). JTLS-GO utilizes two types of WHIP, one for game players and another for game 

controllers. Player-WHIPs allow manipulation of missions, unit tasks, and unit movement. 

Control-WHIPs allow creation or degradation of units and aspects of game control such as 

game speed. The WHIP also presents a common operating picture (COP) to the users as 

well as an interface in which to inject game orders. Figure 8 illustrates the WHIP interface. 

 
Screenshot from JTLS-GO exercise CG18. Red icons represent opposition forces. Purple 
icons represent U.S. units. Blue circles show search areas. 

Figure 8. JTLS-GO WHIP Interface 
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The WHIP automatically routes orders from the player to the CEP. Once processed, 

the player observes changes in the COP in the form of graphics updates, or gains situational 

awareness via formatted messages populated in the message browser. Holistic insight for 

a game is accessible via a Control-WHIP, which also provides certain users direct 

manipulation in game speed, unit creation and unit placement. 

2. Geography 

JTLS-GO versions starting with release 5.0.0.0 exhibit a multi-level grid terrain in 

lieu of a hex-based terrain used in previous releases; these grids contain geographical data 

including terrain type and elevation. Grid squares vary in size from five-minute grids to 

one-degree grids, contingent on the terrain resolution desired; Figure 9 illustrates this.  

 
Representation of 5-minute, 30-minute, and 1-degree grid squares. 

Figure 9. JTLS-GO Layered Terrain Grid. Source: Rolands and Associates 
(2017b). 

The scalable resolution inherent in JTLS-GO enhances this study’s accuracy in two 

primary ways. First, geographical data automatically inhibits altitude-limited aircraft from 

entering certain areas of the map. Additionally, this data ensures that anti-air threats such 

as surface-to-air missiles or ground radar maintain a line-of-sight for a given air target prior 
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to engagement (Rolands and Associates 2017a, 3-4). As with many aspects of the program, 

this geographical data is alterable via the database.  

3. Unit Prototypes 

JTLS-GO models military units and targets using a “‘prototype’ concept,” wherein 

a single entity known as a unit prototype stores “common data for a large number of 

entities” (Rolands and Associates 2017b, 4-3). This simplifies data entry when building a 

scenario, reduces overall database size, and increases game reliability (Rolands and 

Associates 2017b).  

According to the JTLS-GO Analyst Guide (2017b), the simulation presents three 

categories that segregate units: ship unit prototypes (SUP), high-resolution unit prototypes 

(HUP), and tactical-unit prototypes (TUP) (Rolands and Associates 2017a, 3-73). The SUP 

stores data for naval units, while the TUP holds data for all other unit types. The SUP and 

TUP information include object class (i.e., Los Angles-class submarine or commercial jet), 

speed, supply capacity, and sensor suites (Rolands and Associates 2017a, 3-73). The pre-

programmed relationship between these parameters constrains how units in the model 

interact. For instance, an aircraft can only land on a naval unit during game play if the ship 

has a supporting SUP type (SUP TYPE CARRIER, for example). The aircraft, meanwhile, 

requires a naval qualification flag toggled to “yes.” This structure within JTLS-GO limits 

illogical or flawed unit behaviors that could potentially invalidate or confound data that the 

model produces. 

JTLS-GO configures airbases and squadrons as ground units, while the Aircraft 

Target Class (ATC) database collates groups of aircraft belonging to the squadron. The 

Aircraft Class Characteristics index further defines individual aircraft types within the ATC 

database. For example, high-altitude reconnaissance aircraft, such as the MQ-4, RQ-4, or 

U-2, belong to the same “High-Alt-Recce” ATC database, but operational parameters are 

uniquely defined under each aircraft’s discrete index. These parameters include 

characteristics such as range, fuel, runway length requirements for takeoff and landing, 

cruise altitude, maximum altitude, probability of detection and weapons or sensors load-

out.  
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A total of 20 discrete altitude zones, ranging from zero to 100,000 feet, define the 

operating altitudes available for aircraft within the model. Table 2 illustrates this. 

Table 2. JTLS-GO Altitude Zones. Source: Rolands and Associates (2018a). 

Zone Zone Name Highest Altitude in the Zone (Feet) 
1 0-33FT 33.0000 
2 34-50FT 50.0000 
3 51-150FT 150.0000 
4 151-200FT 200.0000 
5 201-300FT 300.0000 
6 301-1000FT 1000.0000 
7 1001-2000FT 2000.0000 
8 2001-5000FT 5000.0000 
9 5001-7000FT 7000.0000 
10 7001-10000FT 10000.0000 
11 10001-13000FT 13000.0000 
12 13001-15000FT 15000.0000 
13 15001-20000FT 20000.0000 
14 20001-25000FT 25000.0000 
15 25001-35000FT 35000.0000 
16 35001-45000FT 45000.0000 
17 45001-55000FT 55000.0000 
18 55001-65000FT 65000.0000 
19 65001-80000FT 80000.0000 
20 80001-100000FT 100000.0000 

 

While these zones do not affect probability of detection (Pd) of an aircraft by a 

ground sensor, altitude data does impact aircraft movement, surface-to-air weapon 

lethality, range (for both aircraft and anti-air weapons), sensor performance, probability of 

hit (Ph) and probability of kill (Pk) (Rolands and Associates 2017a). Thus, experimenting 

with different altitude ranges or zones provides insight in UAV and enemy weapon systems 

behavior within the model.  
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Similar to how it models aircraft, JTLS-GO defines sensor and weapon traits in 

unique indexes. For sensors, pertinent parameters include sensor range, detection radius, 

maximum altitude for detection and recognition, probability of detection, target size 

discrimination, nighttime degradation and weather degradation. Air Defense 

Characteristics indexes define weapon systems, while Targetable Weapons (TW) indexes 

define the weapon itself. For instance, Air Defense Characteristic index 67 demarcates a 

Nike missile battery, while index 987 details the Nike missile parameters. The Air Defense 

Characteristics index includes parameters for engagement capability (simultaneous 

engagements, shots per engagement, shots before reload, reload time, and the like); 

degradation due to weather, day, or night factors; probability of detection when firing; 

maximum range and altitude; and probability of engagement against a given target. 

Likewise, the TW index defines weapon range and speed, radius of effect, circular error 

probable, guidance type(s) employed, altitude constraints, and weather, day, or night 

degradation. 

4. Unit Detection and Attrition  

JTLS-GO is discrete, meaning state changes or game events occur at specified times 

or specified time steps (Rolands and Associates 2017b). For example, intelligence reports 

over a given area are not available to the player “until a [discrete]… time has passed” 

(Rolands and Associates 2017a, 3-69). Likewise, detection is a discrete-time stochastic 

event “based on the probability of detection for units and targets” in a given area, or 

“specifically called out” by a player (Rolands and Associates 2017a, 3-69). According to 

Avery M. Law (2015), a stochastic process is a “collection of… random variables [known 

as the state space] ordered over time, which are all defined on a common sample place” 

(226). Comparing quantified database parameters (probability of detection, target size 

discrimination, nighttime degradation and the like) that compose each unique sensor to the 

CEP-generated state spaces drives detection events. For example, the CEP randomly draws 

a uniformly distributed number between 0.0 and 1.0 and compares it to a given sensor’s 

database-defined parameters to determine if the sensor detects a unit (Rolands and 

Associates 2017b). 
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JTLS-GO uses Lanchestrian attrition models to compute unit casualties (Rolands 

and Associates 2017a, 3-31). According to Law (2015) Lanchestrian attrition, also known 

as an aimed-fire model, describes “a situation whereby a shooter is directly aiming at an 

enemy. If the enemy is destroyed, the shooter moves his fire to a new target” (710). 

Consequently, the firepower of a shooter becomes more concentrated as targets are 

neutralized. Equations 1 and 2 illustrate this concept mathematically. 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=  −𝑎𝑎𝑎𝑎(𝑡𝑡) (1) 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=  −𝑏𝑏𝑏𝑏(𝑡𝑡) (2) 

B(t) delineates the force strength of one side, while R(t) signifies the strength of the 

opponent; a and b are attrition coefficients determined by database entries for lethality, 

Ph, Pk. In Simulation Modeling and Analysis, 5th Edition, Law (2015) describes this 

mathematical model as aimed-force combat, wherein a shooter (i.e., a surface-to-air 

missile battery) fires directly at an enemy (i.e., a UAV overhead). Should it destroy 

enemy, the missile battery re-targets and engages another threat, if applicable. Factors 

that influence unit attrition in JTLS-GO include lethality of the firing weapon, 

survivability of the victim, combat system range and firepower, distance between the 

threat and target, and the like. The sundry databases within the model quantify these 

parameters for each unit.  

5. Model Limitations

As with any model, JTLS-GO has limitations. First, all scenarios within this thesis 

utilize unadulterated, unclassified databases. Therefore, some parameters, particularly 

concerning weapon lethality and aircraft capabilities, may deviate from real-world values. 

However, reviewing pertinent databases within the model and cross-referencing those 

values with open-source information suggests an acceptable level of realism for this study. 

The second inherent limitation is the representation of units. Since JTLS-GO is a theater-

level simulator, it manipulates entities as units rather than as singular components. In the 

scope of this research, this means the database does not discretely define fine-resolution 
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individual parameters (radar cross-section or target size, for instance) but rather collates 

these parameters to overall detection and hit probabilities. Nonetheless, since this study 

focuses on concept development and high-level requirements instead of proposing a 

detailed design, this limitation has minimal influence on the data or methodology.  

C. SCENARIO DESCRIPTIONS 

The events of Cobra Gold 2018 (CG18) frames the experimentation environment. 

Cobra Gold is a multinational exercise held annually in Thailand under the direction of the 

PACOM Warfighting Center (PWC). It entails two components: a field training exercise 

(FTX) and a computer-based command post exercise (CPX). The CPX uses JTLS-GO as 

the training environment in which military units from the United States, Japan, South 

Korea, Singapore, Malaysia, and Indonesia interact. The exercise simulates joint operation 

of navy, marine, army, and air forces from these nations. Injecting future UAV capabilities 

in different instantiations of CG18 allows comparative analysis between current and future 

military capabilities within the same exercise environment.      

1. Baseline Scenario: Cobra Gold 2018 

This scenario takes place in Pacifica, a fictional land mass southeast of Japan 

consisting of six sovereign countries: Sonora, Mojave, Kuhistan, Arcadia, Isla Del Sol, and 

Tierra Del Oro. Figure 10 depicts Pacifica. 
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Screenshot from JTLS-GO exercise CG18. 

Figure 10. Pacifica 

Regional destabilization occurs when Sonora invades land-locked Mojave, 

prompting response from a United Nations-sanctioned multi-national force (MNF). The 

goal of the MNF is to expel Sonoran invaders, enforce an embargo against Sonora, 

maintain sea control in international waters off the Sonoran coast, and provide 

humanitarian assistance to the displaced Mojave refugees. 

Using CG18 as the baseline experimental environment to study future capabilities 

provides several advantages. First, there is ample area for UAV reconnaissance along the 

several hundred miles of Sonoran coastline, and complimenting the goals defined in the 

exercise. Next, Sonora’s ground-based weapons systems, particularly surface-to-air missile 

(SAM) sites, are sufficient in quantity, quality and lethality to pose viable threats to manned 

and unmanned aircraft within the operating area. Additionally, an active Sonoran navy with 

anti-air capabilities endangers aircraft flying the littorals, thus providing a metric to gage 

UAV susceptibility in a contested maritime environment.  
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2. Test Vignettes 

Test vignettes for this study occur during a 12-hour window of game play during 

which UAVs are injected into the CG18 scenario. Variations in UAV employment make 

up the factors for the design of experiments (DOE); the subsequent section discusses the 

variations more comprehensively. 

The vignettes involve UAVs flying reconnaissance missions along the Sonoran 

coast and surrounding waters in user-created directed search areas (DSAs). JTLS-GO uses 

DSAs to define intelligence collection areas within the game. The DSA intelligence 

messages communicate the information collated in these areas and are displayed via the 

message browser; information in these messages includes detection of enemy aircraft, 

naval vessels, combat systems, emitters, and SAM sites.  

D. PREPARING JTLS-GO VIGNETTES  

This section provides an overview in preparing the test vignettes within JTLS-GO. 

Vignette preparation is a four-step process. Foreknowledge of enemy land- and sea-based 

threats drives DSA creation. Next, modeling and injecting UAVs into the simulation 

environment provides assets players can use to explore the DSAs. Finally, assigning 

reconnaissance missions to the UAVs initiates data collection.        

1. DSA Creation 

The player creates and defines DSAs within a player-WHIP. This study relies on 

information gathered from 22 DSAs: 12 on the coastline and 10 above naval vessels of 

interest. The user gains complete situational awareness of the battlespace via the COP 

presented in the control-WHIP, or limited situational awareness from the partial 

information presented in a given player-WHIP. Using the control-WHIP helps identify 

potential areas of interest in which to assign DSAs and is the method of choice for this 

study.  
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2. UAV Model

UAVs for this model are based on the MQ-4C Triton existing in the JTLS-GO 

database. As mentioned previously, the database explicitly states pertinent information 

such as range, runway requirements, and operating altitude. Comparing the parameters 

associated with the UAV modeled in JTLS-GO with unclassified data from the Unmanned 

Systems Roadmap and other open-source information reveals a reasonably accurate 

representation of expectations for a high-altitude, theater-sized UAV.  

3. UAV Injection

Creating and injecting UAVs happens in the Control-WHIP. Options available to 

the user include name, unit prototype, naval qualification, squadron size, and home base. 

Injecting four squadrons with 18 aircraft each provides ample resources for 

experimentation. Lastly, changing the unit arrival time in the Control-WHIP from the 

default value of 99 days to the desired game time places the UAVs in the scenario for 

mission assignment. JTLS-GO acknowledges creation and placement via the message 

browser.  

4. Mission Assignment

Assigning missions to UAVs is done using a Player-WHIP. JTLS-GO offers five 

primary types of air mission: offensive air operations, defensive air operations, support 

missions, logistics operations, and search and rescue missions. These mission types 

determine aircraft load out and ROE. Assigning the UAVs used in this study to 

reconnaissance (or recce) missions outfits them with visual, infrared (IR) and forward 

looking infrared (FLIR) sensors for realistic detection capability against enemy assets.  

E. EXPERIMENTATION 

Experimentation seeks to investigate and determine the “effects of input variables 

(factors) on an output variable (response) at the same time” (Minitab, Inc. 2017). 

Holistically, this process requires several steps. First, defining measures of effectiveness, 

or MOEs, provides a metric by which to gage the impact of UAVs within the simulation. 

These MOEs correspond to the output variables. Next, postulating and establishing factors 
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thought to affect the MOEs is necessary. For this study, operational and performance 

parameters of the UAV (i.e., altitude or time between launches) compose the input 

variables, or factors. Changing factor values results in changes in the scenario response, 

which is then gaged against the MOEs. Subsequent sections define these input variables 

and MOEs more explicitly.  

1. Measures of Effectiveness

Defense Acquisition University (n.d.) defines a measure of effectiveness as “data 

used to measure…mission accomplishment…that comes from using the system in its 

expected environment” (2236). According to DAU (n.d.), this environment entails 

“sensors, command and control, and platforms…needed to accomplish an end-to-end 

mission in combat” (2236). John M. Green (2001) further refines this definition by 

contextualizing MOEs as “quantifiable benchmarks against which the system concept and 

implementation can be compared” (1). 

This study uses two MOEs to answer the proposed research questions, both of 

which are measured over a twelve-hour period of game play. The first MOE focuses on the 

survivability of UAVs while flying reconnaissance missions over a contested maritime 

environment. While 100% survivability is desirable, it is untenable in the simulated 

environment. Therefore, this MOE determines what combination of UAV operating 

parameters yields the least attrition and informs the stakeholder what capabilities are 

necessary to minimize vulnerability of unmanned aerial assets in hostile environments.   

The second MOE is the number of UAV detection events in a twelve-hour period. 

DSA intelligence messages quantify this MOE, with further refinement accomplished by 

parsing the messages for enemy high-value units (HVU) within the DSA. This 

communicates and enumerates the effect UAVs have in maintaining and enhancing 

maritime domain awareness in a contested environment.

2. Design Factors

Law (2015) describes experimental design factors as “input parameters and 

structural assumptions composing a model…[affecting] output performance measures 
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called responses” (629). In the context of this study, design factors are the parameters that 

comprise the operating characteristics of the UAV, while game outcomes pertinent to the 

MOEs illustrate the response. Thus, injecting new UAVs into the CG18 exercise alters the 

observed simulation outcome. Figure 11 shows the graphical representation of this concept, 

whereby UAV design factors are modified in the CG18 exercise. 

Figure 11. Designs of Experiment within Cobra Gold 2018 

Each design factor is further segregated into discrete values, with unique 

combinations of factor values making up design points. For example, 1 UAV flying at 

10,000 feet with an hour between launches would describe one design point. Thus, each 

design point represents a different, alternative UAV configuration within the game. 

Uncontrollable factors, such as unaltered database elements or the quantity and lethality of 

enemy units, are outside the scope of the study and thus remain consistent between each 

instantiation. Controllable factors are the basis for experimentation, and include UAV 

parameters that determine theater-level CONOPs; these parameters represent the 

independent variables of the experiment. Table 3 summarizes the design factors.  
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Table 3. Design of Experiment Factors and Ranges 

Entity DOE Factor Min Max Units 

UAV Altitude 10 60 kft 

UAV Number Employed 1 3 UAVs 

UAV Time Between Sorties 0 60 min 

 

Recalling that JTLS-GO uses discrete altitude zones in modeling weapon range and 

lethality, the design factor varying UAV altitude provides insight in an optimal flight 

altitude for detection and counter-detection. The minimum value represents the typical 

altitude of air missions in CG18, while the maximum altitude provides a realistic 

representation of the flight-altitude from a reconnaissance UAV.  

Likewise, varying the quantity of targets (in this case, UAVs) against an 

adversary’s weapon systems is expected to yield a noticeable trend since JTLS-GO uses 

Lanchestrian attrition. Since the Navy anticipates a four-UAV sortie will provide 

continuous ISR coverage of an area over a 24-hour period (Pomerlau 2018), this thesis 

assumed that a two-UAV sortie would be optimal for the 12-hour period on which each 

vignette is based. Thus, using between one and three UAVs in the modified scenarios 

provides two additional design points to test this hypothesis.  

Finally, staggering UAV sortie time should result in a discernable variation in UAV 

survivability since database parameters for air defense weapons specify time between shots 

and simultaneous engagement capability. This design factor tests the effects of a swarm of 

UAVs saturating an enemy air defense system providing decision makers awareness in an 

optimal employment strategy for UAVs in contested environments. This thesis uses one 

hour as the upper boundary to ensure the last sortie has adequate transit time to reach the 

assigned DSA.   

3. Experimental Design 

After establishing design factors and measures of effectiveness, the next step is 

setting up a design of experiment to quantify relationships between these factors and 
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MOEs. Designs of experiment (DOEs) provide two primary benefits. First, DOE allow 

isolation of interactions within the model. Second, DOE help refine requisite UAV 

capabilities by identifying design factors that have the greatest impact on MOEs.  

Experimentation for this study uses a central-composite design (CCD), which entails 

unique analysis of each design in relation to every other design factor. The number of UAVs 

in the modified scenario ranges between 23 and 69 UAVs, resulting in three levels. Time 

between launches varies from zero minutes (all UAVs launched simultaneously), a half-hour, 

or one-hour, resulting in three additional levels. Since each altitude chosen for experimentation 

represents a different altitude zone within JTLS-GO, covering the extrema (the minimum and 

maximum altitudes at 10,000 feet and 60,000 feet, respectively) and a midpoint necessitates 

three additional levels, resulting in 27 unique design points. Table 4 illustrates design levels 

derived from the aforementioned design factors. 

Table 4. Design Factor Levels 

Total Number 
Employed 

Time 
(min) 

Altitude 
(kft) 

23 0 10 
46 30 35 
69 60 60 

4. Factor Screening

Law (2015) describes factor screening as a means of determining “which factors 

have the greatest effect on a response… [with] the least amount of simulating” (630). This 

thesis uses a 2k-factorial design for initial data analysis and progresses to a CCD for final 

analysis. The former employs only the extrema, or maximum and minimum values for each 

design factor, resulting in eight unique design points. The latter includes midpoints as 

delineated in the previous section, bringing the total number of design points to 27. 

Conversely, a full-factorial design maintaining continuity in all the design factors (i.e., 60 

discrete values for time, each representing one-minute intervals and including all 10 

pertinent altitude zones between 10,000 feet and 60,000 feet) would result in 1,800 unique 
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design points. While this granularity might provide the highest resolution on how the 

design factors impact the game, the requisite time and computing power would negate any 

potential benefit.  

Thus, limiting or screening these factors provides adequate insight on the impact 

each factor has in the simulation outcome. In other words, it illustrates quantitative and 

qualitative trends that communicate whether the individual design factors warrant further 

investigation before progressing to a more inclusive design and time-intensive simulation.  

5. Central-Composite Design 

Once factor screening is complete, using a central-composite design for analysis 

further refines the model and gives greater understanding of the data output. To accomplish 

this, CCD provides estimates of the constant term, coefficients and non-negligible cross-

product terms within the model (Box, Hunter, and Hunter 2005). Since the factor screening 

experimentation shows all of the UAV design factors have an impact on the game outcome, 

using a CCD including 19 additional axial points along with a center point is appropriate 

to further analyze model behavior. This results in a total of 27 design points to test within 

the model. 

6. Number of Replications 

Each design point undergoes several replications in order to reduce data variability 

and account for random errors inherent within the experiment (Alobaidli 2017). This study 

maintains a 95% confidence interval for the data means and uses 30 replications per design 

point for the central composite experimentation. The resulting interval length, w, is 

calculated using Equation 3: 

 

    𝑤𝑤 =  2𝑍𝑍𝛼𝛼/2𝜎𝜎

√𝑛𝑛
      (3) 

 

where α = 0.05, 𝑍𝑍𝛼𝛼/2 corresponds to a value of 1.959 based on the confidence interval, 𝜎𝜎 

is the sample standard deviation, and n is the sample size. Initial data analysis from 10 

replications shows the standard deviations for HVU detections and UAV attrition as 
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105.5 and 4.02, respectively. Thus, 30 replications is expected to yield an interval length 

of approximately 76 HVU detections and around 3 UAV losses; these margins of error 

provide adequate precision for this study.  

F. DATA COLLECTION 

For data collection, this thesis uses three software applications designed by NPS 

SEED Center Research Associate Steve Upton. The user configures game replications with 

the first component, JTLSfarmer. Once complete, JTLSfarmer calls the next application, 

JTLSrunner, which automatically copies and runs multiple iterations of a modified game. 

For the scope of this thesis, the modified game encompasses the injection of UAVs in the 

CG18 scenario; it does not alter any units pre-existing within the game. Finally, JTLSminer 

parses data from the modified scenario by searching all the messages generated during the 

game and extracting those deemed important for discriminating MOEs. As previously 

discussed, this data includes DSA intelligence messages and aircraft loss reports generated 

during gameplay. Lastly, quantifying metrics within these messages communicates the 

impact of injected UAVs within the CG18 scenario. Figure 12 graphically illustrates this 

workflow. 

Figure 12. Data Collection Workflow 



37 

G. DATA ANALYSIS  

JTLSminer extracts raw data from each game iteration, while JMP statistical 

analysis software provides quantitative and qualitative analysis of the raw data in order to 

help answer the research questions. This thesis uses regression analysis, visualizations and 

experiment-driven optimization to quantify and qualify the results of the modified 

scenarios. The following subsections discuss these tools and their use more explicitly. 

1. Regression 

Regression models communicate several pieces of pertinent information. 

Qualitatively, a regression plot reveals how well individual design points fit the modeled 

regression line, thus communicating the general fit of a data set to the regression model. 

Moreover, regression plots depict the relation of a singular design point to the overall mean 

response. Quantitatively, the R-squared (R2) value communicates how well the data fits the 

regression model; in other words, it is a numerical representation delineating the variability 

of a data set within the model. The probability value, or p-value, shows the significance of 

the holistic model in affecting the model’s response. Taken together, the regression plot 

provides a visual and numeric assessment of model fit and data variation. 

Regression plots are a means to correlate response variables, plotted along the 

ordinate, with a set of independent variables along the abscissa (SAS Institute, Inc. n.d.). 

For this thesis, the response variables are HVU detections and percentage of UAV losses, 

which relate to the previously discussed MOEs, while the independent variables 

correspond to the aforementioned design factors: quantity of UAVs flown, altitude, and 

time between launches.  

2. Main Effects Plots 

Main effects plots explain how strongly individual design factors affect the 

response variable. Steeper slopes are indicative of a stronger interaction or effect on the 

response variable. Typically, positive slopes delineate that increasing a given parameter 

increases the associated response metric. Conversely, a negative slope means that 

increasing the parameter decreases the response metric, while a zero or near-zero slope 
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indicates that the parameter has marginal effects on the metric. Figure 13 shows an example 

main effects plot. 

Figure 13. Example Main Effects Plot: HVU Detection 

3. Interaction Plots

Interaction plots communicate possible interaction effects between the design 

factors. Similar to main effects plots, the slope on an interaction plot qualitatively denotes 

the strength of the interaction, while parallel lines correlate to minimal interaction. Figure 

14 shows an example of an interaction plot.  

Figure 14. Example Interaction Plot: Altitude and UAV Quantity on  HVU 
Detection 
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4. Partition Trees 

As data-mining tools, partition trees compliment the information provided from a 

regression model (SAS Institute, Inc. 2018). A cutting value within JMP determines the 

data splits that result in the highest resultant R2 value. As a result, each partition or split of 

the tree illustrates the most significant factor affecting the metric at that split. This provides 

a rudimentary decision tree, showing stakeholders which parameter or combinations of 

parameters result in good or undesirable outcomes. Figure 15 shows an example of a 

partition tree. 

 

Figure 15.  Example Partition Tree 

H. CHAPTER SUMMARY 

This chapter provides the reader a brief overview of the model-based systems 

engineering methodology. It then discusses JTLS-GO as the modeling environment, to 

include its history, structure, strengths and limitations for use in this thesis. The chapter 

then provides descriptions of the modeling scenario within CG18, as well as the test 

vignettes this thesis uses to test future UAV capabilities. Next, this chapter informs the 

reader how to prepare JTLS-GO for testing and simulation. Lastly, the chapter concludes 

with a brief discussion on designs of experiment, design factors, and data collection and 

analysis that comprise Chapter IV.  
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IV. RESULTS AND DATA ANALYSIS 

This chapter contains results from the computer-aided experimentation that address 

this thesis’s research questions. The discussion starts with analysis of the 2k screening 

results and examines the impact the chosen design factors have on the MOEs. Next, this 

chapter transitions to the results from the central-composite design, providing more 

thorough analysis of the two MOEs that comprise this work. Lastly, this chapter concludes 

with examination of potential correlations between the two MOEs, illustrating potential 

trade-offs inherent in system design.  

A. RESULTS FROM 2K-FACTOR SCREENING 

The purpose of screening is to develop a preliminary understanding if, or how, the 

design factors influence the exercise outcome and potentially impact the MOEs. Table 5 

shows the eight design points and associated design factors used for the screening 

experimentation. 

Table 5. Design Points Used for Factor Screening 

Design Point Altitude (kft) UAVs Flown 
Time Between  
Sorties (min) 

1 10 23 0 

2 10 23 60 

3 10 69 0 

4 10 69 60 

5 60 23 0 

6 60 23 60 

7 60 69 0 

8 60 69 60 
 

Starting data analysis with these eight design points provides a number of benefits 

for this study. First, limiting the scope of experimentation to eight unique design points 
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with ten replications per point reduces the requisite time for data collection. In effect, this 

provides initial insight and rudimentary trends that qualify and quantify the impact that the 

three design factors (altitude, number of UAVs flown, and time between sorties) have on 

the scenario outcome, while reducing the necessary time investment to gather these trends. 

Next, correlating the design factors to the pre-established MOEs is also a benefit of 

experimental screening. This, in turn, validates the usefulness of the MOEs and determines 

if the appropriate requirements are established for the conceptual system prior to engaging 

in more intensive experimentation.  

1. MOE 1: UAV Attrition

The regression model provides a visual assessment of model fit and data variation. 

Figure 16 shows the regression model for the first MOE and identifies several pertinent 

trends therein. First, the coefficient of determination, or R2 value, quantifies how closely 

data fits a regression line. In this case, an R2 value of 0.96 suggests that a high percentage 

of the response variable (percentage of UAVs lost to enemy defenses in this instance) can 

be predicted or explained by the model; in other words, 96% of the response variability 

falls around the projected mean (Minitab, Inc. 2013). This result communicates that the 

chosen design factors are useful for explaining the validity of the MOE. 

Figure 16. Actual versus Predicted Plot: UAV Attrition 
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The graph also illustrates the qualitative goodness-of-fit of the regression model. 

Each black dot represents a unique design point; the eight dots encompass the eight design 

points used for experimental screening. The bold red line between the abscissa and ordinate 

is the linear regression line, the pink swaths surrounding the regression line indicate the 

confidence curves, and the central blue line is the average percent attrition between the 

eight design points. The closer the eight design points are to the regression line, the better 

the model’s fit. Moreover, since the confidence curves intersect at the mean of the response, 

the results can be considered as statistically significant, meriting further research. 

The main effects plots illustrate and quantify the impact that each individual design 

point has on the mean percentage of UAVs lost to enemy fire. In context of a screening 

experiment, the main effects plot helps determine if a given design factor warrants more 

intensive examination. Figure 17 shows the main effects plot and associated parameter 

estimates for MOE 1. 

 

Figure 17. Main Effects Plot: UAV Attrition 

This figure exhibits several trends useful in analyzing potential impacts the 

individual design factors have in the mean percentage of UAVs lost. First, the three graphs 
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all exhibit a non-zero slope, suggesting that altitude, quantity of UAVs flown, and time 

between launches all have an impact on the percentage of UAVs lost from enemy fire. The 

two-tailed t-test values further qualify this trend. These values, seen under the “Prob>|t|” 

column, correlate to the p-value and evaluate how well the sample data supports the null 

hypothesis that the individual design factors have no effect on UAV attrition (Minitab, Inc. 

2014). The low p-values rejects the null hypothesis and suggests that changes in UAV 

attrition are attributable to changes in the design factors: altitude and the number of UAVs 

flown are primary factors determining UAV losses. Increasing time between sorties from 

zero minutes to 60 minutes also has a meaningful effect on UAV attrition, but is not as 

strong a factor as the other two.  

2. MOE 2: High-Value Unit Detections 

Figure 18 shows the regression model for the second MOE. As with UAV attrition, 

this model exhibits good fit (R2 = 0.98) and is statistically significant based on the low p-

value of 0.0087. Additionally, it shows that the design factors have meaningful impact on 

MOE 2. Similar to the previous model, the regression model for HVU detection relies on 

eight design points; however, the astute reader will notice only six points are explicitly 

illustrated on the graph. This suggests that a factor or combination of factors is 

predominantly driving the lower detection means seen in the bottom left corner of the 

graph. Testing this hypothesis is accomplished using main effects plots and interaction 

plots; the subsequent sections discuss the application of these techniques more precisely. 
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Figure 18. Actual versus Predicted Plot: HVU Detection 

The main effects plots show that altitude is the driving factor determining the 

quantity of enemy HVUs detected; this is seen in both the graph and the accompanying 

probability-value of 0.0016. Conversely, time between launches has almost no impact, as 

seen by the near-zero slope and quantified by the large t-value. The quantity of UAVs 

flown has some effect in mean HVU detection, though it is not as prominent a factor as 

altitude. Figure 19 shows the main effects plot delineating how altitude, UAV quantity, 

and sortie size affect enemy HVU detection. 

 

 

Figure 19. Main Effects Plot: HVU Detection 
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Unlike UAV attrition, HVU detection exhibits interaction effects as well, primarily 

between altitude and the quantity of UAVs flown. Figure 20 illustrates the interaction 

effect. 

Figure 20.  Interaction Effects between Altitude and UAV Quantity 

The upper-right and lower-left quadrants of the graph illustrate the same trend; 

however, it is more clearly delineated in the top-right. Similar to the main effects plot, the 

slope of the lines correlate to the strength of the interaction effect. Thus, the graph 

communicates two valuable conclusions. First, the flat-line at 60,000 feet suggests that 

sensor resolution is severely limited at high-altitude; in other words, flying more UAVs 

does little in increasing HVU detections since the sensor resolution is insufficient within 

the game environment. Conversely, adding more reconnaissance UAVs at lower altitude 

results in a positive trend vis-à-vis HVU detection.  

3. Experimental Screening Conclusions

The initial screening experiment provides two primary conclusions. First and 

foremost, the results show that all three design factors are significant enough in influencing 

the MOEs to warrant subsequent exploration. While altitude, quantity, and time between 

launches have a more prominent effect on MOE 1, the trends and interaction effects 

between these factors merit additional analysis for MOE 2. 
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Second, the results, though drawing from a relatively small sample size, exhibit 

behaviors that match expectations, indicating that the system is modeled in a reasonable 

manner. For instance, flying a UAV in contested areas at higher altitude decreases 

vulnerability, presenting the enemy air defenses a comparatively smaller target compared 

to a UAV flying at lower altitudes. The trends from the main effects plots and prediction 

illustrate this. Likewise, intuition suggests that flying at lower altitudes would result in a 

greater number of HVU detections, while high altitude flight results in decreased detection 

due to insufficient sensor resolution; the initial trends from the screening experiment 

supports this theory.   

B. RESULTS FROM THE CENTRAL-COMPOSITE DESIGN 

The data and results from the screening experiment show that all three of the 

selected design factors affect the model and warrant further investigation. A central-

composite design forms the basis for the higher-resolution DOE, implementing an 

additional 19 design points to the 2k-screening experiment. This more comprehensive DOE 

provides greater insight in how each design factor, or combinations of factors, affect the 

model outcome. Table 6 shows the design points for the CCD.  
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Table 6. Design Points for Central-Composite Design 

1. MOE 1: UAV Attrition

Figure 21 shows the regression model delineating mean percentage of UAV 

losses across the 27 design points. The model exhibits decent fit, with 76% of the data 

variability falling around the projected mean and mostly within the 95% confidence 

bands. The subsequent section explains the effects of the individual design factors on the 

model. 

Design Point
Altitude 

(kft)
UAVs 
Flown

Time Between 
Sorties (min)

1 10 23 0

2 10 23 30

3 10 23 60

4 10 46 0

5 10 46 30

6 10 46 60

7 10 69 0

8 10 69 30

9 10 69 60

10 35 23 0

11 35 23 30

12 35 23 60

13 35 46 0

14 35 46 30

15 35 46 60

16 35 69 0

17 35 69 30

18 35 69 60

19 60 23 0

20 60 23 30

21 60 23 60

22 60 46 0

23 60 46 30

24 60 46 60

25 60 69 0

26 60 69 30

27 60 69 60
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Figure 21. Regression Model for UAV Attrition 

a. Prediction Profiler and Parameter Estimates for MOE 1 

The prediction profiler graphically illustrates the effects that altitude, quantity of 

UAVs flown, and time between launches have on the mean percentage of UAVs lost, while 

the sorted parameter estimates quantify the statistical and practical impact of the three 

factors within the model via the estimate and t-ratio columns. The estimate column 

provides an approximate percentage change in UAV losses that results from altering one 

of the three design factors, while the t-ratio communicates statistical significance for a 

given factor. According to Law (2015) and Ross (2010), a larger t-value indicates stronger 

evidence to reject the null hypothesis. In the scope of this thesis, the null hypothesis 

postulates that all means are the same, suggesting that none of the three design factors 

influence the MOE. Figure 22 shows both the profiler and parameter estimates for MOE 1.  
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Figure 22. Prediction Profiler and Parameter Estimates for UAV Attrition 

The left-most graph in the prediction profiler illustrates how increasing altitude 

decreases the mean percentage of UAVs lost to enemy fire, while the associated t-ratio 

shows this correlation is statistically significant. This result makes sense: higher altitudes 

can not only exploit range limitations of anti-aircraft weaponry, but also take advantage of 

the fact that radar systems suffer from range-dependent signal loss (Macfadzean 1992). 

Moreover, the curvature in the trend line suggests that altitude alone will not make the 

aircraft impervious to enemy artillery; however, it can reduce susceptibility by limiting the 

possible anti-air assets that the enemy could effectively employ.  

Similar to increasing altitude, flying more UAVs in a hostile region has a positive 

effect on lowering attrition. This result also matches intuition since an increase in UAV 

quantity can overwhelm certain characteristics intrinsic in a fire control system, such as 

slew rate or firing rate.  

The final main effect to analyze is the impact of launch time on UAV losses. Similar 

to the other two factors, time between launches also has a desirable effect on lowering 

UAV casualties; however, it is not as strong an influence as the others. While this seems 

contradictory to the previous trend, several factors may explain the results. One possibility 

is that the model inherently considers ADA avoidance between sorties. In other words, 

staggering launches provides an opportunity for future flights to circumvent areas of higher 
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attrition en route to their respective DSA. Operationally, this would be realistic, as mission 

planners would reorient decisions based on battlefield observations. 

Since there are no major interaction effects within the three design factors driving 

the percentage of UAV losses, another possible explanation is that there is an unresolved 

influence that specifically affects time between launches. For the scope of this thesis, UAV 

routing was not explicitly defined by the author. Thus, the model defaults to using fuel 

efficiency and time to dictate flight paths to the various DSAs. For example, the first sortie 

may be flying to a more volatile DSA than the second sortie, which launches at some 

discrete time interval (in this case, either 30 or 60 minutes). As a result, the second sortie 

experiences lower casualties, seemingly attributable to the temporal difference. Further 

research experimenting with UAV routes in situ could potentially reveal the actuality of 

this confounding effect.    

b. Partition Tree for Attrition 

The partition tree in Figure 23 more concisely illustrates trends based on attrition 

from the parameter estimates. The topmost node represents the 27 design points in their 

entirety, with the first split occurring at the most significant factor, UAV altitude. This split 

conveys a higher loss-rate percentage flying at 10,000 feet versus 35,000 feet or 60,000 

feet; nine UAVs flying at 10,000 feet suffer nearly twice the attrition compared to 18 UAVs 

flying at 35,000 and 60,000 feet. Thus, if the primary concern of a stakeholder is 

minimizing attrition, the model suggests that flying at higher altitudes is a viable design 

option to achieve that goal.  

The next split shows that the quantity of UAVs flown has the next-greatest 

influence on UAV survivability. In this instance, enemy forces in the model are less likely 

to attrite UAVs in larger sortie sizes. Conversely, at lower altitudes, staggering time 

between launches has the most impact on UAV survivability: launching every 

reconnaissance asset without delay maximizes low-altitude attrition.  

The final split delineates the factor combinations within the model that provide the 

best survivability and conversely, the highest attrition. This partition shows that the lowest 

percentage of UAV losses are obtained when flying a large number of aircraft at high 
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altitude; consequently, flying fewer UAVs at low altitude increases the loss rate within the 

model.  

Figure 23. Partition Tree for MOE 1 

2. MOE 2: High-Value Unit Detections

Figure 24 illustrates the regression model for MOE 2. The model shows a high R2 

of 0.99, suggesting that the model explains almost all of the data variability. However, 

rudimentary observation into the data dispersion reveals that mean detections as a whole 

fall into two groups: detections from an altitude of 10,000 feet in the upper right, and 

equally low detections from flights at 35,000 feet or 60,000 feet grouped in the lower left. 
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Figure 24. Regression Model for HVU Detection 

a. Prediction Profiler and Parameter Estimates for MOE 2  

Figure 25 illustrates the main effects plots for altitude, number of UAVs launched, 

and sortie times in driving MOE 2. From the left-most graph, it is apparent that detections 

flying at 10,000 feet results in significantly more HVU detections, while 35,000 feet or 

60,000 feet flight altitudes have equally poor performance in resolving HVUs. The t-ratio 

quantifies the influence of altitude as a singular factor in resolving HVUs and shows this 

particular design factor to be the predominant influence for MOE 2. While the trend line 

shows a hockey-stick effect with an inflection point around 45,000 feet, this is not 

necessarily accurate and is likely an artifact resultant from limited repetitions across three 

design points. Further research in increasing repetitions and finer granularity in altitudes 

can provide a more thorough understanding of the model’s behavior. However, the trend 

communicates meaningful data to stakeholders, as it illustrates the tradeoff within the 

model between high-altitude and HVU resolution. Within the context of the model, to be 

successful high-altitude UAVs require better sensor resolution; thus, decision makers can 

determine if the costs inherent in improving sensor performance are worth the benefits of 

high-altitude flight.  

The next most significant design factor in influencing HVU detections is the 

quantity of UAVs allocated to each DSA. Again, the results of the model match 
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expectations. Operationally, employing more sensors typically results in greater coverage, 

thus increasing the number of objects potentially detected. In this respect, the model can 

help decision makers in quantifying the necessary force composition (i.e., how many UAVs 

are needed) to meet mission requirements.  

Unlike MOE 1, time between launches by itself has no meaningful impact in 

determining HVU detections as seen by the near-horizontal line and trivial t-value. Since 

detections are a binary event (it either occurs or does not occur), launch times should not 

have an impact once the UAV arrives at its DSA. However, there is a statistically 

significant interaction effect between launch time and the quantity of UAVs flown.  

 

Figure 25. Prediction Profiler and Parameter Estimates for HVU Detection 

b. Interaction Effects  

Figure 26 shows the interaction effects for MOE 2. The primary effects of interest 

occur between altitude and the quantity of UAVs flown, and time between launches and 

quantity of UAVs flown. The graph illustrates the interaction between altitude and UAV 

quantity in the middle row, leftmost graph and more clearly in the top row, center graph. 

The latter communicates that increasing the quantity of UAVs has different effects based 
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on mission altitude. For example, at 60,000 feet, adding more UAVs does little to influence 

the MOE one way or the other. This is due to the fact that within the model, the sensor 

package is resolution-limited at high altitude; while the design factor changes the mission 

altitude for the UAVs, the sensor resolution remains constant throughout the experiment. 

Consequently, adding more sensors has no effect. Conversely, adding more UAVs at lower 

altitude has a desirable effect; greater sensor coverage leads to more mean detections since 

the sensor resolution in the model is adequate at 10,000 feet. 

A second interaction occurs between the quantity of UAVs employed and the time 

between launches. The far-right graph in the middle row and the middle graph in the bottom 

row illustrate this interaction. As more UAVs are flown, staggering launches increases 

HVU detections, while staggering launch times with a minimal number of UAVs employed 

results in a slight decrease in HVU detections. This trend correlates with the quantity and 

launch time influences seen from MOE 1. As more UAVs are employed, staggering sorties 

increases survivability resulting in greater sensor coverage over the DSAs. Conversely, 

flying fewer UAVs with minimal time between launches results in higher attrition, 

negatively impacting HVU detections.  

 

Figure 26. Interaction Effects for MOE 2 
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c. Partition Tree on HVU Detection

Figure 27 shows the partition tree for MOE 2, delineating the sets of design factors 

that most heavily influence HVU detection. The first split graphically illustrates the trend 

from the regression model; namely, low-altitude flight at 10,000 feet results in significantly 

more detections compared to either a 35,000-foot flight altitude or 60,000-foot flight 

altitude. The quantity of UAVs employed has the next most significant impact on HVU 

detections in the model. The results of this split make sense operationally. While sensor 

resolution is inhibited at 35,000 feet and 60,000 feet, adding more UAVs gives a slight 

advantage in detecting HVUs. The split on the right side of the tree mirrors this trend; in 

order to maximize HVU detections within the game, low altitudes combined with the 

maximum quantity of sensors employed results in the most detections.  

Figure 27. Partition Tree for MOE 2 

C. MOE CORRELATION 

Figure 28 illustrates the correlation between mean HVU detections versus mean 

UAV attrition across the 27 design points. Analyzing this relationship provides a concise 
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visualization on the potential trade space between HVU detections and attrition within the 

model. The three colors (red, green, and blue) represent the experimental altitudes at 60,000 

feet, 35,000 feet, and 10,000 feet respectively. The size of each of the points correspond to 

the number of UAVs flown. The largest points indicate 69 UAVs flown, while the smallest 

point indicates a design point with 23 UAVs flown. The abscissa represents the percentage 

of UAV losses; in this case, less is better. The ordinate shows HVU detections, wherein 

the higher points along the y-axis are desirable.  
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Figure 28. Mean HVU Detections versus Mean Attrition 
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The three labelled design points within the graph indicate a combination of design 

factors that dominate others and delineate a rudimentary Pareto frontier for the data. In the 

context of this thesis, a higher percentage of casualties with less HVU detections relative 

to other design points are characteristics of a dominated point. A Pareto frontier 

encompasses the set of design factors that are Pareto-efficient, wherein it is impossible to 

increase performance in one metric without making another metric worse. The linear 

boundary and shaded region demarcate the non-dominated points versus the dominated 

points; while the data for this thesis results in an explicit dividing line, this is not typical. 

Due to the relatively low number of replications and limited number of design points 

inherent in this thesis, this should not be interpreted as a de facto tradeoff curve; 

nevertheless, it gives decision makers an idea of potential compromises between increasing 

detections and higher UAV attrition.  

Overall, the graph exhibits several trends that match operational expectations as 

well as anticipated model behavior. Generally, flying a greater number of UAVs results in 

higher raw attrition, but a lower loss percentage in the model. Since air defense weapons 

in JTLS exhibit explicitly defined firing rates, this result makes sense; a swarm of UAVs 

at a given time can oversaturate the weapon system, resulting in a higher percentage of 

aircraft leaking by the ADA sites. The second significant trend the MOE correlation shows 

is the effect that altitude has in sensor performance within the model. 

While flying at higher altitudes lowers UAV attrition, it also adversely impacts the 

number of Sonoran HVUs detected. In the context of the model, such a result suggests that 

sensor performance needs to be improved in order to maximize the benefits from high-

altitude missions. The final key trend the data communicates is the impact that additional 

UAVs have in increasing HVU detection. In a real-world environment, employing more 

sensors results in greater coverage of a given area, and thus can potentially increase the 

quantity of enemy unit detections. The model results show this: so long as sensor 

performance is adequate, employing a greater number of UAVs positively impacts the 

number of Sonoran HVUs reported.  
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D. CHAPTER SUMMARY 

This chapter provides the qualitative and quantitative results from the designs of 

experiment detailed in Chapter III. This chapter starts with an overview of the screening 

experiment, showing how the results from experimentation with a limited number of eight 

design points warrants further study. The discussion then transitions to the central-

composite design used in this thesis. This experiment utilizes 19 additional design points 

to further explore how the three design factors qualitatively and quantitatively influence 

the two MOEs. Moreover, it provides operational context for the results and explains how 

the outcomes from the various design points generally match real-world expectations. 

While the data and subsequent analysis in this chapter are from a limited number of 

repetitions and cover a fairly small number of design points, the trends and outputs 

nonetheless provide rudimentary insights in tradeoffs inherent in the model. Chapter V 

expands on potential areas for future research that can bolster the usefulness of these 

results, as well as recommendations for stakeholders interested in using JTLS to model 

future UAV capabilities.  
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V. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS  

This thesis shows how using a computer-aided wargame as a modeling and 

experimentation environment can provide decision makers insight regarding potential 

impacts and limitations of proposed future-fleet capabilities. Using a model-based systems 

engineering approach, this work outlines the establishment of theater-level concepts of 

operation and high-level requirements pertinent for unmanned aerial vehicle employment 

in a contested environment. Next, determining meaningful measures of effectiveness 

provide a way to quantify the impact that UAV employment has in various wargame 

scenarios. Using appropriate statistical and metamodeling techniques, this thesis offers 

rudimentary relationships between UAV design factors and the measures of interest, 

communicating to stakeholders the combinations of factor values that provide the most 

desirable and least beneficial outcomes within the model. Holistically, this research 

demonstrates how applying an MBSE methodology in conjunction with computer-aided 

wargaming and experimentation can enhance understanding in high-level system 

requirements and tradeoffs, providing decision makers an additional tool to determine 

future fleet capabilities. The remainder of this chapter includes a synopsis of the first four 

chapters, a discussion of the results in an operational context, and explains the applicability 

of the methodology for future work. 

A. RESULTS SUMMARY 

In the context of this thesis, implementing UAVs for intelligence, surveillance and 

reconnaissance had a positive effect on discovering enemy HVUs, regardless of sortie size; 

however, increasing sortie size increases HVU detections. Moreover, larger sorties suffer 

a lower percent-attrition rate in the scenario. In this regard, the model suggests to force 

planners that acquiring a large number of ISR-capable UAVs can satisfice reconnaissance 

missions and minimize loss rate. 

Additionally, flying at low altitudes positively impacts HVU detections, but 

adversely influences UAV survivability, illustrating a potential trade-space within the 
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model. Generally, staggering launch times for large sorties decreases percent attrition while 

increasing HVU detections.  

Overall, the trends resultant from this research suggest larger sortie sizes and 

staggering launches benefits both HVU detections and survivability from enemy defenses. 

Contingent on mission requirements, using high-altitude UAVs can decrease aircraft 

attrition, while implementing low-altitude UAVs increases both attrition and HVU 

detections. 

B. CONCLUSIONS AND RECOMMENDATIONS 

This section describes how the results of the model correlate to the prescribed thesis 

research questions proposed in Chapter I. The first research question aims to determine 

some potential insights automated wargaming can provide to force planners. The second 

research question postulates on the potential effects that modeled UAVs with envisioned 

capabilities have in enhancing theater-level maritime domain awareness, in terms of HVU 

detection during the operational period. The final research question addresses what 

capability requirements are necessary to bring operational value for a reconnaissance asset, 

again using HVU detection as an MOE while also considering UAV susceptibility to 

enemy air defenses. The answers to these questions illustrate the potential tradeoffs and 

operational implications of various UAV instantiations within the scenario.  

1. What insights can an automated computer-aided wargame provide to force

planners to help shape future fleet capabilities?

The results from the model correlate to what would be expected operationally, 

validating the feasibility of using a CAW as a force planning tool. Moreover, the model 

communicates trends that can help decision makers determine which functional capabilities 

have the greatest impact in mission accomplishment, while consequently illustrating 

potential trade spaces. For example, if minimizing attrition were a critical performance 

metric, the model suggests that a high-altitude reconnaissance UAV may be an appropriate 

solution; however, high-altitude flights are sensor resolution-limited within the model, 

conveying a potential trade-off.  
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Overall, adopting an MBSE methodology in conjunction with an automated CAW 

can provide decision makers at N9 a viable tool to gage operational impacts and experiment 

with various CONOPs for planned future fleet assets. The complete decision support 

system for N9 enables repeatable, credible, and defensible analyses for decision makers. 

Based on the results of this study, N9 should continue researching automated CAWs as a 

useful force planning tool. 

2. What is the effect of adding future unmanned aerial assets on a combined 

task force’s ability to maintain maritime domain awareness along 

contested coastlines and littorals? 

In the baseline Cobra Gold exercise, no reconnaissance assets (manned or 

unmanned) were allocated to patrol the Sonoran littorals. As a result, adding any number 

of UAVs in an ISR role proves beneficial in building situational awareness. Within the 

model, HVU detection is primarily contingent on two factors: the mission altitude and the 

number of UAVs employed. In general, flying more UAVs at lower altitudes maximize 

HVU detection. The absence of aerial reconnaissance in the littorals was in many ways a 

function of limited resources during Cobra Gold. Based on the results of the model, force 

developers should consider a contingent of UAVs to satisfy ISR mission requirements. 

3. What capabilities do future unmanned aerial systems require to be value-

added to existing reconnaissance methods in a joint maritime force? 

Although the inefficacy of high-altitude UAVs in detecting enemy units is an 

artifact of this specific model, such results nevertheless communicate pertinent 

information. For example, in a real-world context such a trend conveys to stakeholders 

which functional areas for a planned high-altitude UAV require additional engineering or 

are perhaps technologically immature. In this case, a capability gap exists in the modeled 

sensor’s target discrimination abilities at higher elevations; therefore, making high-altitude 

ISR missions tenable requires improving sensor performance or considering an entirely 

different sensor package.  

While sortie size and altitude are primary drivers in determining HVU detections, 

time between launches also affects enemy detections; however, the effect of launch time is 
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contingent on the sortie size. As a greater number of UAVs deploy, truncating time 

between launches increases HVU detections. Conversely, staggering times with a minimal 

number of UAVs results in a slight decrease in HVU detections. In an operational context, 

the relationship between the quantity of UAVs and launch times suggest that small swarms 

of UAVs are more effective in an ISR role when launched near-simultaneously. Therefore, 

if it is economically infeasible to procure a vast squadron of reconnaissance UAVs, 

engineering the capability for faster launch times would maximize HVU detections. From 

a real-world design perspective, this may necessitate vertical-takeoff functionality to 

support near-simultaneous launch times.  

Generally, the data also shows that increasing altitude decreases UAV 

susceptibility to modeled enemy air defenses; however, while altitude is inversely 

proportional to attrition, UAV casualties never trend to zero, suggesting that a modicum of 

air-defense system efficacy remains regardless. Consequently, the model implies that high-

altitude flight is not a panacea; there are inherent risks flying over enemy littorals that 

elevation alone does not entirely mitigate. This result further illustrates potential trade 

spaces; namely, it allows decision makers to explore whether the reduction in UAV losses 

at high elevation outweigh the costs associated with engineering and building a high-

altitude capable UAV, especially if the sensor package for such an asset was particularly 

expensive. Conversely, further analysis may suggest that increased susceptibility and lower 

costs may prove most economical while still satisficing HVU detections.  

With respect to sortie size, the model shows that increasing the quantity of UAVs 

increases raw attrition, but decreases the overall percentage of UAVs lost to enemy air 

defenses. From a force planning perspective, this communicates that a large squadron of 

UAVs may prove beneficial if operating in an environment with a significant quantity of 

capable enemy air defenses.  

While flying large swarms of UAVs is favorable to both increasing HVU detections 

and minimizing attrition, this capability would require decision makers to determine 

whether the benefits of increasing HVU detections and lower percent attrition outweigh 

the costs of adding these additional UAV assets.  
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Overall, based on the output of the model, if force developers desire to implement 

high-altitude UAVs for reconnaissance, further experimentation with various sensor 

packages within the model may illustrate a more optimal choice to enhance HVU detection. 

Conversely, if lower-altitude missions satisfy operational requirements, large contingents 

of UAVs increase HVU detections. As a system, force planners need to establish monetary 

costs associated with sizeable UAV squadrons, as well as explore logistics and 

maintenance impacts, manpower requirements, and other resource tradeoffs associated 

with employing and sustaining a large UAV squadron. 

C. FUTURE RESEARCH 

There are two prominent questions fundamental in force planning: how much is 

enough, and what capabilities are requisite for mission accomplishment (Owens 2012); the 

results of this thesis help decision makers answer these questions. While the methodology, 

data and trends from this model provide useful insight in operational capabilities and 

functional requirements of ISR-capable UAVs, there are areas of refinement that can 

potentially maximize the usefulness and usability of JTLS-GO as a tool to study future 

fleet capabilities.  

Since this thesis is a first-effort in utilizing JTLS-GO as a model to test future fleet 

capabilities, there are several areas where future study may prove beneficial. First, time 

constraints necessitated only 30 replications for each design point in this thesis; running 

more replications of each design point will reduce variability in the estimates of the means 

and will provide higher confidence that the trends are a result of something other than 

stochastic noise. Moreover, adding additional design points, particularly in altitude ranges 

between 10,000 feet to 35,000 feet, can help better illustrate the behavior of the model and 

potentially delineate a more definite inflection point in HVU detections. Similarly, 

additional research with the model may uncover which enemy ADA assets are successfully 

engaging UAVs flying at 60,000 feet. This can prove beneficial in refining necessary UAV 

capabilities and design factors that decrease attrition in the game. Moreover, modifying the 

experiment to entail user-defined UAV routes can help eliminate potential confounding 

effects with respect to time between launches and UAV losses.  
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Another area for future work is applying the methodology in this thesis to other 

JTLS-GO wargames, as well as other computer-assisted exercises and wargames. Since 

R&A maintains such a diverse client base, using other scenarios as the modeling 

environment can further refine requisite UAV capabilities to support ISR missions. 

Moreover, the extensive databases and units modeled in JTLS is conducive to creating 

other vignettes to test different future capabilities and warfare areas beyond the ISR-realm. 

Some example scenarios for additional exploration include: 

• integrating a UAV in a hunter-killer role, wherein the aircraft detects an 

HVU and relays the information to a ship or other strike-capable asset for 

neutralization; 

• leveraging electronic countermeasures or electronic warfare to enhance 

survivability of the UAV itself or other coalition assets in theater; 

• combining UAVs with unmanned systems in other domains (i.e., 

unmanned underwater vehicles) to track and target enemy assets; 

• exploring performance impacts in adverse weather or nighttime 

environments; and 

• refining modeled sensor packages for high-altitude, long endurance 

(HALE) missions. 
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APPENDIX A. JTLS-GO SET-UP 

 This appendix describes how to set up and start JTLS-GO, create and implement 

UAV prototypes for use in the modified game scenarios, and splice orders for game 

automation. All images herein are screenshots from JTLS-GO taken by the author.  

A. STARTING JTLS-GO 

1. Open a terminal window. 

2. Type “jtlsmenu” and hit <ENTER>. A 10-option menu will appear. 

 
 

3. Type “6” in the terminal window and hit <ENTER> to start the JTLS-GO Web 

Services Manager (WSM).   

4. At the WSM window, enter desired scenario name (i.e., CG18) and hit 

<ENTER>. 

5. In the WSM, click “Control” in the menu bar and start all services. 
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6. Ensure status indicators for JODA, OMA, and XMS all toggle green. Close the 

WSM and return to the terminal window. 

7. Type “7” in the terminal window and hit <ENTER>. This will run the JTLS-GO 

Combat Events Program (CEP).  

8. At the CEP window, enter desired scenario name and hit <ENTER>. This must be 

the same scenario as entered in Step 4. 

9. If the terminal window returns with message that scenario is locked, type “unlock 

[scenario name]” and hit <ENTER> to unlock the scenario. Repeat Step 8. 

10. When prompted for “Start of Restart,” type “R” and hit <ENTER>. 

11. When prompted, type the desired start checkpoint from those listed and hit 

<ENTER>. 
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12. When prompted to push pre-run orders, type “Y” and hit <ENTER>. At this 

point, the CEP will unpack all the pertinent data for the desired game scenario. 

13. When CEP completes the download to the JODA, open a web browser. In the 

address bar, type “localhost:8080” and hit <ENTER>. This opens the JTLS-GO 

web login. 
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14. Open a Control-WHIP and a United States WHIP for the desired scenario. Click

“Login.”

B. CREATING UAV PROTOTYPES USING THE CONTROL-WHIP 

1. Open a Control-WHIP.

2. Click OrdersUnits Create New Units in the menu bar. A “Create.Unit”

window appears.



71 

 
 

3. In the Common Unit Data tab, enter the pertinent information for all data fields 

and drop-down menus. 

a. Select “Navy” for Service and “USN” for unit faction. 

b. Enter a five-digit UIC. 

c. Select “Average-Medium” for Current CQR and Highest CQR. 

4. In the Type Specific Data tab, enter the following information in the requested 

data fields: 

a. Under “Tactical Unit Prototype,” select “18.AC.FW_US.” This TUP contains 18 

fixed-winged aircraft under control of the U.S.-player-WHIP. 

b. Under “Unit Type Aircraft Owned,” select “MQ4C.Triton” from the drop-down 

menu. 

c. Enter the maximum sorties per day for the squadron. 

d. Toggle the “Unit Naval Qualified” radio-button to “yes.” This allows the aircraft 

to launch and land on Navy aircraft carriers in the game.  
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5. When all the information is entered for the unit and type data, click “Send” in the 

bottom left corner to route the order to the CEP. 

6. In the Message Browser, a “New Unit Report” will generate, verifying creation of 

the UAV squadron. 

7. The default arrival time for a new unit is set to 99-game days. To change this, 

click Orders LogisticsTPFDDs Manage TPFDD in the menu bar. The 

“Manage.TPFDD” dialogue box will open. 



73 

 
 

8. Click the “Modify Unit TPFDD” radio button. 

9. Under “TPFDD Unit,” type the unit name for the created prototype. This unit 

name should match that entered in the “Create.Unit” dialogue box.  
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10. Select “ASAP” for arrival time. 

11. Under “Location” select “USS Ronald Reagan” from the Command Hierarchy 

window. The latitude and longitude for the unit will auto-populate.  

12. Under “Operating Airbase” select “Ronald Reagan” from the Command 

Hierarchy window. 

13. Click “Send” in the bottom-left corner to route the TPFDD to the CEP. 

14. In the Message Browser, verify a “TPFDD Report” is generated. 

15. In the Command Hierarchy window, verify the unit turns purple, signifying the 

unit is ready for orders from the U.S. player-WHIP. 
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16. Click the “Game Speed” button and set the game speed to “10” for a few seconds. 

In order to process orders, the game needs conduct at least one time step. Once 

this is complete, set the game speed back to “0.0.” 

C. GENERATING ORDERS FOR UAV ISR MISSIONS USING THE U.S. 
WHIP 

1. Open the U.S. Player-WHIP. 

2. In the menu bar, click OrdersIntelligence Operations Manage DSAs to 

create DSAs.  

 
 

3. Under “DSA Options,” toggle the “Create a New Circular DSA” radio-button. 
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4. Enter a DSA name and select U.S. for owning faction. Toggle the “DSA Use” 

radio-button to “National.” 

5. In the “Collect Center” option, click the black arrow. Transition to the game map 

to select DSA collection areas. The text box will populate a latitude and longitude 

corresponding to the DSA.  

6. Change collection frequency to “Multiple times” and set the frequency to hourly. 

This dictates when DSA intelligence messages will populate the message 

browser.  

7. Set the collection radius to 10 kilometers. 

8. Click “Send” to complete DSA creation.   

9. Repeat steps 2–8 until the desired number of DSAs are created. 

10. In the menu bar, select OrdersAir Support Recce to create ISR missions. 
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11. In the “Reconnaissance” window, assign a mission name and squadron. 

 
 

12. Set “Number Aircraft” to “1.”  

13. Select the “Orbit” radio button. 

14. In “Orbit Location,” click the center of a DSA created in step 5. The latitude and 

longitude will automatically populate the text box. 

15. Assign an Orbit Altitude. This thesis used altitudes of 10,000 feet, 35,000 feet and 

60,000 feet for experimentation.  
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16. Click “Send” to route the order to the CEP.

17. In the Command Hierarchy window, the tasked UAV squadron will show an

upward pointing arrow.

18. Repeat steps 10–16 until all aircraft are assigned as desired.

D. EXTRACTING AND SPLICING ORDERS 

1. Open a file browser and find the “Game” folder. Open the folder.

2. Find the working scenario and open the .ci0 file. This file contains all the orders

processed by the CEP in the scenario.

3. Find the appropriate UUV/UAV orders. These orders will be at the bottom of the

ci0 file.

4. Copy the appropriate UUV/UAV orders.

5. Open the .ci0 file for desired start checkpoint.

6. Paste the UUV/UAV orders to the end of the ci0 file.
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7. If necessary, alter the decimal-day to reflect the desired start time for unit creation 

or mission assignment. This information is in the header preceding every order. 

 
 

a. To convert game hours to decimal days, divide the hour reported in the game time 

by 24. 

b. To convert minutes to decimal days, divide the minutes reported in the game time 

by 1440. 

c. To convert seconds to decimal days, divide the seconds reported in the game time 

by 86400. 

d. Adding the results of a-c will yield the 13-digit decimal value in the decimal day. 

8. When complete, save the modified ci0 file. These orders will automatically 

process when JTLSrunner is started. 
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APPENDIX B. TABLE OF DESIGN POINTS  

Design Point Altitude (kft) UAVs Flown 
Time Between Launches 
(min) 

dp10100 10 23 0 
dp10130 10 23 30 
dp10160 10 23 60 
dp10200 10 46 0 
dp10230 10 46 30 
dp10260 10 46 60 
dp10300 10 69 0 
dp10330 10 69 30 
dp10360 10 69 60 
dp35100 35 23 0 
dp35130 35 23 30 
dp35160 35 23 60 
dp35200 35 46 0 
dp35230 35 46 30 
dp35260 35 46 60 
dp35300 35 69 0 
dp35330 35 69 30 
dp35360 35 69 60 
dp60100 60 23 0 
dp60130 60 23 30 
dp60160 60 23 60 
dp60200 60 46 0 
dp60230 60 46 30 
dp60260 60 46 60 
dp60300 60 69 0 
dp60330 60 69 30 
dp60360 60 69 60 
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