
Richmond, P.W., R.K. Scoggins, B.Q. Gates, and H. Yamauchi (2007) “Common Ground Vehicle Route Planning for
Army Simulations” Paper 07S-SIW-062, Spring 2007 Simulation Interoperability Workshop, Norfolk, VA.

Common Ground Vehicle Route Planning for Army Simulations

Dr. Paul W. Richmond, PE.
U.S. Army Engineer Research and Development

Center
Geotechnical and Structures Laboratory

3909 Halls Ferry Road
Vicksburg, MS 39180

Paul.W.Richmond@erdc.usace.army.mil

Dr. Randy K. Scoggins
U.S. Army Engineer Research and Development

Center
Geotechnical and Structures Laboratory

3909 Halls Ferry Road
Vicksburg, MS 39180

Randy.K.Scoggins@erdc.usace.army.mil

Burhman Q. Gates
U.S. Army Engineer Research and Development

Center
Geotechnical and Structures Laboratory

3909 Halls Ferry Road
Vicksburg, MS 39180

Burhman.Q.Gates@erdc.usace.army.mil

Harold Yamauchi
Rolands & Associates Corporation

500 Sloat Avenue
Monterey, CA 93940
hmyamauc@nps.edu

Keywords:

Route Planning, Vehicles, OneSAF Test Bed (OTB), Simulations, Networks, Shape File, Battlespace Terrain Reasoning
and Analysis (BTRA)

ABSTRACT: An ERDC research program, “Common Maneuver Networks for Embedded Training, Mission Planning
and Rehearsal” (CMN) seeks to allow Army simulations to use a ground vehicle maneuver network generated with
Commercial Joint Mapping Toolkit (C/JMTK) and Battlespace Terrain Reasoning and Analysis (BTRA) products
(BTRA is also an ERDC research program). Achievement of this goal would mean mission rehearsals could be carried
out on the same vehicle maneuver network used for mission planning. Initially, the intent was to demonstrate the use of
a BTRA maneuver network in the OneSAF Objective System (OOS) and, thus, we developed all the computer code in
Java. A recent effort in support of a geospatial battle management language (geoBML) demonstration resulted in a
need for an implementation of this code in the OneSAF Testbed Baseline (OTB), along with an understanding of current
OTB route planning.
The task involved merging an external routing network and corresponding cost factors in shape file format into the
current OTB ground vehicle route planning scheme. Rather than implementing C++ code to reproduce the Java
functionality in OTB, the GNU (Operating System) Compiled Native Interface (CNI) was employed to compile the Java
code into native code and link with the most recent OTB C++ code. An analysis was first performed to identify which
behavior; libraries, finite state machines, etc., in OTB would be affected. The principle difficulty to be overcome was
related to the time required to find a route (on the order of minutes) and the relation between the Java virtual machine
and the C++ processes which occurs when multiple routes are requested.
This paper describes the implementation of Java-based route planning software with a BTRA-generated maneuver
network into OTB 2.5. Current route planning methods in OTB are also discussed, along with efforts associated with
implementation into OOS and how the Java code used is also related to COMBATXXI development efforts.

1. Introduction

The Army’s Future Combat System (FCS), a system of
systems, and Future Force will depend heavily on a
common operational picture (COP) of the battlespace.
The FCS COP must be able to depict terrain and weather
effects on operations for mission planning, rehearsal, and

execution (battle command) as well as for training.
Embedded training is a key component of FCS and will
be used to explore and develop courses of action for
decision support. To enable the Future Force to see first,
understand first, act first, and finish decisively, FCS must
have the capability to transition seamlessly between
Battle Command (BC) systems and models and

simulations (M&S). Current Embedded Training and
Battle Command systems do not share tactical maneuver
data. The battlespace COP is, therefore, inconsistent
between these systems, potentially leading to severe
consequences from incorrect decisions about maneuver
potential during training, planning, and execution of
operations. The Battlespace Terrain Reasoning and
Awareness (BTRA) ERDC research program provides
tools to the Commercial Joint Mapping Tool Kit
(C/JMTK) which will feed BC systems. There is potential
for linking common software elements in both OOS and
BTRA (e.g., Standard Mobility Application
Programmer’s Interface [1] and the logical environmental
data model). The M&S scope of this research is limited to
OneSAF Objective System and OneSAF Testbed Baseline
(OTB). The BC scope is focused on C/JMTK via BTRA.
The environment is limited to those features and attributes
dealing with maneuver networks. Behaviors/battlespace
functions are limited to those associated with ground
vehicle maneuver. The overall objective of this research is
to develop a common, consistent capability for assessing
mobility and dynamic maneuver potential between BTRA
and Army simulations.

This paper describes the implementation of route planning
code into OTB. It describes our Java code and how it was
linked to OTB using the GNU Compiled Native Interface
(CNI). New and modified OTB code libraries are
described. Comparisons are made between a standard
OTB route and a BTRA based route, along with the
additional environmental influences that can be
considered.

2. Background

In force on force simulations, the principal goal of long
range route finding (this paper is limited to discussion of
long range planning as opposed to short range, which is
concerned with dynamic obstacles such as other vehicles)
is to be able to move to a given point avoiding obstacles.
In more advanced route finding, the route can be
optimized based on a criterion (on-road only, off-road,
fastest, most concealed, etc). One way to do this is to
develop a network graph which represents the maneuver
environment and apply a cost to each edge or segment of
the network. In the simplest case, the length of an edge is
the cost, but costs can also be associated with the terrain
and estimated vehicle speeds. The network data is stored
in a forward star structure – the most efficient format for
representing networks [2]. Mathematically, this is known
as a shortest path problem, and two well known solution
methods are Dijkstra’s [3] and the A* [4] algorithms.
There are other methods for route finding such as

wavefront propagation in a visibility graph where
obstacles are modeled as opaque. Wavefront propagation
is resource and computation intensive. Bellman-Ford
route finding allows negative edge costs but doesn’t scale
well.

The OneSAF Test Bed, with respect to vehicle
performance modeling, is based on a relatively simple
terrain model, and while extensions and other
improvements [5-9] have increased the ability to affect
vehicle speeds based on terrain conditions, the underlying
network or “routemap” used by OTB for long range route
planning appears unchanged from its earliest version as
MODSAF. Figure 2.1 shows the obstacles and corridors
displayed in an OTB plan view, along with a platoon
route around an obstacle. These obstacles, corridors, and
bypasses (not shown in the figure) are compiled by
preprocessing the terrain database and creating a *.rnl file
(where the * is the name of the terrain file specified). For
the simple case of routing around an obstacle in an open
area, the route planner works well. Routing through a
complex area (e.g. mountain pass) can be problematic and
depends on the fidelity of the terrain database.

Route

Corridor

Obstacle

Route

Corridor

Obstacle

Figure 2.1 Obstacles and corridors from the OTB *.rnl

file, terrain features not shown for clarity.

The Pathfinder project (formally titled: “Integration of
Urban Characterization, Munitions Effects & Threat
Assessment for Ground Vehicle Planning in Urban
Environments”) was an effort sponsored by the Battle
Command Simulation Experimentation Directorate over
several years. The target simulation for this project was
the Combined Arms Analysis Tool for the XXIst Century
(COMBATXXI). One of Pathfinder’s objectives, “vehicle
route planning in urban environments with consideration
of movement rates”, resulted in Java code for performing

vehicle route planning based on network graphs, which
were used in this effort.

OneSAF Objective System (OOS) also makes use of a
network graph for ground vehicle route planning.
However, there are differences in network compilation.
Part of the network is defined by the road network and
compiled before simulation start. The other part of the
network is implicit and is compiled at run-time from a
grid overlaid over the cross-country terrain. However, the
network representing cross-country terrain is expanded
only as needed to find each route. OOS makes use of the
A* algorithm to find least-cost paths through the network
whether on-road, cross-country, or combined networks.

The Commercial Joint Mapping Toolkit1 (C/JMTK) is the
Department of Defense’s future geospatial and
visualization toolkit; it is a geospatial information system
(GIS) based on ESRI products. The ERDC’s Battlespace
Terrain Reasoning and Analysis research project is
producing tools which support ground vehicle mobility
analysis and tactical maneuver planning. For actual unit
route planning, it uses ESRI’s proprietary network
analyzer package, which utilizes the A* algorithm. A
specific product of interest is a maneuver network which
can be exported as a shapefile.

Figure 2.2 A BTRA network overlaying the OTB terrain.

The shapefile2 format actually consists of a series of files:
• *.shp - holds the actual vertices of each geometric

object.

1 http://www.cjmtk.com/
2 http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf

• *.shx - holds index data pointing to the structures
in the *.shp file.

• *.dbf - holds the geometric object attributes in
dBase format.

• *.prj - an ascii text file that contains information
about the map projection of the shapefile.

• *.sbn and *.sbx - hold spatial indices for use for
read/write operations on shapefiles.

Figure 2.2 shows a BTRA network overlaying the OTB
terrain; the network consists of nodes (end points) and
arcs. Each arc has attributes based on mobility assessment
of the corridor or road it represents. White lines are the
trafficable arcs, black lines are not trafficable (obstacle
areas). Although formal documentation of the BTRA
network arc attributes is limited, currently it contains
about 56 attributes [10] which can be used to develop a
cost associated with finding a route, many of these are
based on the vehicle-terrain interaction of the 12 vehicle
classes represented in the standard mobility API [1].

3. Implementation

3.1 Overview

The OTB code is organized by libraries or directories
with each library prefaced with “lib”. Thus, for example,
the libmove directory contains source code and
documentation files relating to movement. The conceptual
flow chart in Figure 3.1 shows our libmaneuvernet library
as it relates to other parts of OTB. A command line
argument is used to activate initialization and availability
of our code to the simulation. The maneuver network
shape files are expected to be in the same directory as the
OTB terrain file and have the same name, with standard
shape file extensions, as described above.

3.2 Libmaneuvernet

The major elements of the libmaneuvernet library are:
• man_net_JVM - The OTB C++ wrapper class

used to execute PATHFINDER Java code. It
was created using OTB’s model template. It
also transfers data to and from the Java Virtual
Machine (VM) variable address space.

• jman_net - This is a Java object that is
associated with and called by the
man_net_JVM object. Its main purpose is to
execute other PATHFINDER methods to
compute a route.

Figure 3.1 Flow chart of OTB/BTRA maneuver network implementation.

• ext_jotb - A sub directory of libmaneuvernet,

which contains external Java archives (jar
files). During the make process, these are
copied to the OTB jar directory.

A man_net_JVM3 C++ object and a corresponding
jman_net object together act as the bridge between the
C++ code and the Java source code. The jman_net object
is an object inside the Java Virtual Machine (VM).
However, jman_net also has a representation understood
by C++ code. We accomplished this by using the GNU
Java compiler gcj and the Compiled Native Interface
(CNI) framework4. The gcj compiles the full
PATHFINDER code base and produces jar files that are
executed in the GNU Java VM. The GNU CNI, described
in more detail below, allows gcj to produce extra files that
allow a C++ class to define variables and methods that
correspond to Java types. There is also a C++ interface to
access the Java VM variables in a straight-forward way as
well as the reverse. Although this approach requires use
of the GNU compilers to work, we found the CNI to be
robust and simpler to implement C++ code than Sun’s

3 Java and C++ class and method names are shown in bold type.
4The GNU Compiler for the Java Programming Language.
http://gcc.gnu.org/java/

Java Native Interface (JNI) which is more portable. The
newly created library libmaneuvernet thus provides the
bridge between C++ in OTB and the Java code in the
PATHFINDER route planner. The libmaneuvernet
performs two main functions: execute PATHFINDER
code methods consisting of standard Java code, and
transfer data between the C++ man_net_JVM object and
the Java jman_net object. The meaning of data transfer
here is to copy values between C++ memory and Java
VM memory for use in the other language. The C++
names and a short description of the fields in
man_net_JVM are given in Table 3.1. Those variables
which start with “goal” are a reflection of the OTB
routepoints structure, and not of all these values are
currently used by the jman_net. The Java class jman_net
includes corresponding fields within the definition of
corresponding Java data types, as well as several methods
employed to copy arrays to/from C++ pointers, to read
terrain network data,and to compute the route by calling
PATHFINDER methods. The jman_net methods are
listed and described in Table 3.2. Two significant
methods in the man_net_JVM C++ class are the
initialization function man_net_init and the route
planning function man_net_getRoute.

Initialization consists primarily of creating the Java VM

Start point
End point
Waypoints
Boundaries
Unit width

Use BTRA
network?OTB Main

Standard
route finding
operations

Start Java

Read
Maneuver

libmaneuvernet
Initialize

Return Route

Precompiled
Java jar files:

Pathfinder
Geotools
Utils …

Movement
task using
maneuver
network

OTB Move task
GUI

No

Yes

man_net.java

man_net.java

man_net_JVM.c

man_net_JVM.c

Route

and instantiating the man_net_JVM object, which in turn
creates an instance of the jman_net Java object. Java
methods are then called to initialize and read the BTRA
network from the shapefiles. The man_net_getRoute
method takes two sets of coordinate points as arguments
in addition to left and right boundary line segments. These
are converted from OTB system coordinates to LAT-
LONG coordinates and used to place a route request in
the queue of the PATHFINDER routing service.

Table 3.1 Java class man_net_JVM fields for data

transfer.
unitWidth Unit formation or vehicle

width
goal_num_pts Number of points in the

requested plan, at least two.
goal_mes_id An array of multi-elevation

structure ids associated with
each goal_num_pts

goal_encl_id An array of enclosure ids
goal_user_data An array of user data
goal_point_id An array of point ids, which

points to the actual
coordinates

goal_next_segment
_width

An array of route widths
associated each segment

goal_points An array containing the route
waypoints returned by
PATHFINDER

Table 3.2 Java class jman_net methods.

jman_net Class constructor
setShapefileBase
PathName

Sets string to location of
terrain network files

getNextArcWidth Returns the width of an arc
from network database

routemap Copies the route request from
C++, calls PATHFINDER,
copies results from Java to
C++ overwriting the passed
arguments

checkEnabled Builds indicators to display
enabled/disabled BTRA
network arcs in OTB

createNetwork Builds PATHFINDER
network files from the
shapefiles

readNetwork Reads in PATHFINDER
network

getProjection Retrieves the geospatial
projection to use for
coordinate conversions

readShapeLayer Reads in the shape layer file

PATHFINDER calculations can be time consuming,
particularly for longer routes. The original
implementation of route planning in OTB required the
thread calling the route planning code to block until the
route was returned. This was not considered suitable for
BTRA planning due to the lags introduced in updating the
OTB processes imposed by lengthy PATHFINDER route
calculations. Therefore, a client/server arrangement was
implemented in man_net_JVM to allow the calling
thread to continue while a PATHFINDER server
computes the route. The libBTRAtraveling library5
required modifications to allow non-blocking behavior
while waiting for the client/server thread to finish. The
required modifications amount to separating the route list
creation processes into a portion performed before the
request and a portion performed after the request had
returned. The existing implementation blocked on each
route request call. In the threaded applications, the calling
thread, that is the spawned BTRA move task, is
responsible for checking the libmaneuvernet
man_net_JVM object periodically to determine if a new
route is available for the vehicle id associated with the
route request. The non-blocking man_net_JVM method
man_net_poll is available to test the PATHFINDER
server request to determine if a given route has been
computed and is available. Note that the dashed outlined
area in Figure 3.1 is the portion of the route finding task
performed by the PATHFINDER server. Each request is
polled at every scheduled tick for all vehicles to check the
associated request ID before proceeding. The vehicle will
continue waiting until all the segments of a request have
been completed. At this point, the BTRAtravel finite state
machine transitions to following the route (i.e. moving).

3.3 GNU compiled interface
The CNI allows Java source code to be compiled and
placed in a library for linking with other object modules
created by GNU C++. In addition, CNI provides methods,
data structures, and a preprocessor application that
facilitate writing C++ code to access Java variables in the
Java VM as well as the reverse. Any Java classes that are
to be shared are first expressed in a Java source file. This
is then processed by the GNU gcjh utility to generate a C
header file in which Java classes are expressed in terms of
C++ classes. All primitive Java data types (int, double,
etc.) have C++ type definitions (jint, jdouble, etc.). Arrays
of Java primitive data types, as well as untyped memory,
may also be created in the Java VM by the C++ method
JvMalloc. This memory is allocated and deallocated by
the Java garbage collector just as in normal Java code; of
particular usefulness to us was the ability to execute other

5 Nearly a direct copy of the original OTB libutraveling library.

Java class byte code within the libgcj virtual machine.

3.4 Other changes to OTB

Other changes to OTB included a modification to
libtactmap to allow the BTRA network to be drawn as a
single object rather than a set of OTB line objects. This
greatly reduced overhead and allowed the BTRA
maneuver network to be displayed quickly. Various
changes were made which allow a correct OTB build
under Fedora Core 5 Linux. Fortunately, the changes to
libBTRAtraveling solved most problems since unit,
mixed, and company level routing is done by spawning
libBTRAtraveling tasks. A side effect is that units in a
company proceed as soon as a route is available and not
all at once. The delay between starting is probably going
to be small as the units of the company are in the same
general location. This could be addressed by modifying
higher level unit routing or formation maintenance
behaviors.

3.5 External jar files

Vehicle routing through the BTRA maneuver network is
provided by a Java route planning service originally
developed under the Pathfinder project. The service was
written as an Application Programmer’s Interface (API)
to determine the least cost path over a network graph. It
implements an A* algorithm to find the least cost path
from a single source vertex to a single destination vertex
on a directed graph. A minimum-priority queue data
structure was implemented to support the algorithm.

The API was written as generically as possible. This
means that no cost functions or special algorithms were
written within the API to calculate edge costs. The idea
was to allow the application developer to have the ability
to write a library of cost functions with each cost function
incorporating the appropriate algorithm. These cost
functions can then be instantiated and the appropriate one
passed to the API as the situation dictates. In order for the
developer to accomplish this, the API provides a Java
interface called CostFunctionIfc that declares three
methods. The developer writes a cost function that
“implements” all of the methods declared in
CostFunctionIfc. For example, one of the methods
declared in CostFunctionIfc is calculateCost, which
returns the non-negative cost of traversing an edge. The
developer must create a cost function class and write a
calculateCost method that returns a cost based on the
algorithm appropriate for the application. The cost must
be non-negative since the A* algorithm assumes non-

negative costs. Eight cost functions were created for this
project that implemented the CostFunctionIfc interface:
(1) arc distance, (2) arc traversal time, (3) arc distance
where a penalty is enforced whenever an off-road edge is
utilized, (4) arc distance where a penalty is enforced
whenever a road arc is utilized, (5) edge traversal time
where a penalty is enforced whenever an off-road arc is
utilized, (6) arc traversal time where a penalty is enforced
whenever a road arc is utilized, (7) cover/concealment,
and (8) arc distance with a penalty for arc’s which have a
width less than the unit’s width.

The route planning service API assumes the graph is
represented as a collection of adjacency lists, and that arc
flow is unidirectional. In addition, there are interfaces
defined in the API associated with the arcs, nodes, and
graph called, respectively, ArcIfc, NodeIfc, and
NetworkIfc. The methods declared in these interfaces are
needed to either support the bookkeeping performed by
the A* algorithm (for example, to obtain the shortest path
estimate from the source to the current vertex, a method
called getShortestPathEst is declared in NodeIfc), or to
simply access some component of the graph (for example,
to return all of the vertices in the graph in a Java
Collection, a method called getNodes is declared in
NetworkIfc).

Since the BTRA maneuver network is exported in
shapefile format, the *.shp file, in particular, is not
structured as required by the route planning service API;
i.e., the maneuver network is not represented as a
collection of adjacency lists and arc flow is bi-directional.
Since it could not be accessed directly by the route
planning service, a class to convert the *.shp file into a
format compatible for the API was developed. This class,
called NetworkGenerator, makes use of a GeoTools
library that can access *.shp files to generate an ascii file
in the desired format. GeoTools6 is an open source Java
toolkit for software developers who need to manipulate
geospatial data. It implements Open Geospatial
Consortium (OGC)7 specifications and provides a
framework for developers to easily implement OGC-
compliant server-side services, standalone applications or
applets. GeoTools is under constant development (latest
stable version is 2.2.2) and is released under the GNU
Lesser General Public License (LGPL). In addition to
providing access to the *.shp file, GeoTools is also used
by all eight cost functions to access the .dbf file to obtain
cost data.

6 GeoTools home page: http://geotools.codehaus.org/
7 Open Geospatial Consortium home page:

http://www.opengeospatial.org/

Finally, an OpenMapTM-based viewer was developed to
help verify that the route planning service and the eight
cost functions were implemented correctly. OpenMapTM8
is an open source JavaBeans-based geospatial toolkit by
BBN Technologies. Like GeoTools, it is under constant
development (latest stable version is 4.6.3) and is freely
available, downloadable from the OpenMapTM website.
The download has a viewer packaged as a sample
application. Using the OpenMapTM API, we wrote our
own layers and integrated them into the viewer in order to
display the maneuver network, call the route planning
service, and display the resulting route. Lastly, JDOM9
was included as a dependency of GeoTools, but was not
used directly.

4. Results
Figure 4.1 shows a platoon moving along a route based on
the fastest route to the “Destination”. Formation, vehicle
spacing, and speed values are controlled by unchanged
OTB methods. For platoon routing in OTB, one route is
found and then, based on the formation, the 4 offset routes
are created. If the width of the arc is not sufficient for the
unit’s formation, OTB will change the formation to
column.

Figure 4.2 shows a similar movement goal, using the
standard OTB route planner (long blue lines). The short
pink lines are the result of the local map planner which
seeks to avoid the obstacle not planned for in the initial
route. Notice that the local planner has moved the
vehicles off the original plan, and will eventually follow a
path around the obstacle. Local map planning is still
available to the vehicles following a BTRA route.

5. Future Work

Work in the near future will involve bounding the search
area for the route with unit boundaries. Integrating
PATHFINDER routing using BTRA networks in OOS is
also planned for this year. Using a BTRA network for
cross country maneuver planning sometimes results in
zigzag routes, as movement is specified as lines directly
between vertices. OTB entity movement behaviors need
to allow movement across the entire edge width and also
allow “cutting corners” when appropriate.

8 OpenMap home page: http://openmap.bbn.com/
9 JDOM home page:: http://www.jdom.org/index.html

Figure 4.1 Fastest route for a platoon using the BTRA

network in OTB.

Figure 4.2 Platoon routing using standard OTB move

task.

6. Summary

The purpose of this effort was to investigate the seamless
transfer of maneuver potential between BC and M&S
systems. In so doing, an order prepared in a system using
BTRA components can be exercised on terrain with
consistent ground vehicle movement potential.
Implications are that as vehicles execute these tasks in the
operations order, locally planned routes over consistent

Destination

terrain will result in realistic movement, which takes into
account recent terrain analysis and intelligence data.

6. References

[1] Baylot Jr., E.A., B.Q. Gates, J.G. Green, P.W.

Richmond, N.C. Goerger, G.L. Mason, C.L.
Cummins, and L.S. Bunch: “Standard for Ground
Vehicle Mobility,” U.S. Army Engineer Research
and Development Center, Geotechnical and
Structures Laboratory, Vicksburg, MS ERDC/GSL
TR-05-6, 2005.

[2] Gallo, G., and S. Pallottino (1988) “Shortest Paths
Algorithms” Annals of Operations Research, 13, 3-
79.

[3] E.W. Dijkstra: “A Note on Two Problems in
Connexion with Graphs” Numerische Mathematik,
Vol1, pp. 269-271, 1959.

[4] R. Sedgewick and J.S. Vitter: “Shortest Paths in
Euclidean Graphs” Algorithmica, Vol. 1, No. 1, pp.
31-48, March 1986.

[5] U.S. Army (1996) “CCTT Dynamic Behavior,
Design Synthesis Report” PEO-STRI, Orlando, FL.

[6] U.S. Army (1996) “Compendium of CCTT
Algorithms, Data, Data Structures and Generic
System Mappings” PEO-STRI, Orlando, FL.

[7] Joint Precision Strike Demonstration (JPSD) Program
Office (2002) “System Detailed Description for the
Joint Virtual Battlespace (JVB)” Fort Belvoir, VA.

[8] Mason, G.L., R.B. Ahlvin, and J.G. Green (2001)
“Short-term Operational Forecasts of Trafficability”
ERDC/GSL TR-01-22, U.S. Army Engineer
Research and Development Center, Vicksburg, MS.

[9] Condon, P. (2002) “Routing Design Notes V0.1 for
the OneSAF ERC Program” Science Applications
International Corporation.

[10] Blais, C.L., N.C. Goerger, P. Richmond, B. Gates,
and M. Pace (2005) “Data Mapping and Ontology
Design for Common Maneuver Networks” Paper
05S-SIW-140, Spring 2005 Simulation
Interoperability Workshop, San Diego, CA.

7. Acknowledgment and Disclaimer

This research was sponsored by the U. S. Army Engineer
Research and Development Center, Geotechnical and
Structures Laboratory. Permission was granted by the
Director, Geotechnical and Structures Laboratory to
publish this information.

Citation of trade names does not constitute an official
endorsement or approval of the use of such commercial
products. All product names and trademarks cited are the
property of their respective owners. The findings of this
report are not to be construed as an official Department of
the Army position unless so designated by other
authorized documents.

Author Biographies

PAUL W. RICHMOND Ph.D., P.E. is a mechanical
engineer at the U.S. Army Corps of Engineers, Engineer
Research and Development Center (ERDC) where he
develops ground vehicle mobility models for use in
simulations, simulators and performance analysis models,
specifically related to terrain interaction and off-road
performance He obtained his Bachelor of Science from
Clarkson University, a M.S. from Dartmouth College, and
his Doctorate from the University of Alaska, Fairbanks.

RANDY K. SCOGGINS Ph.D. is a physicist at the U.S.
Army Corps of Engineers, Engineer Research and
Development Center (ERDC) where he develops models
for use in simulations, simulators and analysis,
specifically related to visualization and performance
optimization. He obtained his Bachelor of Science from
Mississippi College, a M. S. from Georgia Tech, and his
Doctorate in Computational Engineering from Mississippi
State University.

BURHMAN GATES began his career at the U.S. Army
ERDC in 1990. He works in the areas of testing,
modeling, and transfer of vehicle terrain interaction
models. He is a member of SAME, IEEE, and the
National Society of Professional Engineers and has served
as president of the Mississippi Engineering Society
Vicksburg Chapter. Mr. Gates received his B.S. degree in
Electrical Engineering from Louisiana State University.

HAROLD YAMAUCHI is a programmer with Rolands
& Associates Corporation supporting the U.S. Army
TRADOC Analysis Center – Monterey. He received his
A.B. degree in Statistics from the University of
California, Berkeley, and his M.S. degree in Operations
Research from Oregon State University.

